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ABSTRACT 

Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many 

researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices 

across studies using meta-analysis techniques and then analyze the pooled correlation matrix 

using structural equation modeling techniques. Several multivariate methods of MASEM have 

been proposed by the researchers. In this dissertation, I compared the commonly used 

multivariate methods for meta-analytic path modeling. Specifically, I examined the Generalized 

Least Squares (GLS) method (Becker, 1992; Becker & Schram, 1994) and the Two-Stage 

Structural Equation Modeling (TSSEM) method (Cheung, 2002; Cheung & Chan, 2005) using 

both simulation studies and real data analyses. Both the traditional GLS approach (Becker, 1992) 

and the modified GLS approaches (Becker & Fahrbach, 1994) were applied and compared with 

the TSSEM approach. Fixed-effects data and random-effects data were generated to see how 

these approaches differ at the first and second stages of MASEM. The results shows that the 

modified GLS approach performs as well as or better than the TSSEM approach in both the first 

step of synthesizing correlation matrices and the second step estimation of the parameters and 

standard errors, using both fixed-effects data and random-effects data. The original GLS 

approach only performs well when the within-study sample size is large enough (of the 

simulation situations in this dissertation, n 100 ). Both the modified GLS approach and the 

TSSEM approach produce equivalent parameter estimates across all conditions. However, the 

standard errors from the TSSEM approach seem to be over-estimates under certain conditions. 

Overall, both the modified GLS and TSSEM approaches are appropriate for conducting meta-

analytic path modeling and the difference in parameter estimates is minimal. 
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CHAPTER I 

 

INTRODUCTION 

 

Meta-analysis is a set of statistical techniques to examine results from a series of 

related studies. Glass (1976) coined the term “meta-analysis” to refer to the “analysis of 

analyses.”(p. 3). It is widely used to synthesize research findings in educational, 

psychological, behavioral and medical sciences (e.g., Hedges & Olkin, 1985; Hunter & 

Schmidt, 2004; Shadish, 1996; Sutton et al., 2000). It uses effect sizes as quantitative 

indices to summarize the results of studies. Common effect sizes include Pearson‟s 

correlation coefficient r, standardized mean differences (Cohen‟s d and Hedges‟s g) and 

odds ratios. Generally, researchers use meta-analysis to test homogeneity among the 

effect sizes across studies. If the effect sizes are homogeneous, the reviewer may estimate 

the mean effect size, construct a confidence interval for the mean effect size and test 

hypotheses about it. If the effect sizes are found to be heterogeneous, the reviewer may 

apply moderator analyses to explain the variations of effect sizes.  

 

Methods for Meta-analytic Structural Equation Modeling 

 

Several textbooks have given comprehensive descriptions of the concepts and 

techniques of meta-analysis (e.g., Cooper & Hedges, 1994; Hedges & Olkin, 1985; 

Hunter & Schmidt, 1990, 2004; Lipsey & Wilson, 2001; Sutton et al., 2000). Most meta-

analyses involve a single effect size like the standardized mean difference between an 

experimental group and a control group, or the Pearson‟s correlation coefficient r 

between two outcomes; recently, growing interest has been shown in the synthesis of 

correlation matrices across studies. Similar to the research synthesis of a single effect size 

per study, the synthesis of correlation matrices involves firstly testing the homogeneity of 

correlation matrices across studies; a pooled correlation matrix is then obtained if 

homogeneity is found. If correlation matrices are heterogeneous, moderator analysis may 
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be applied to explain the variations. Methodological approaches have been proposed and 

developed for synthesizing correlation matrices and conducting subsequent analyses (e.g., 

methods to estimate a regression or path model, or compute structural equation models) 

using the pooled correlation matrix (e.g., Becker, 1992, 1995, 2000; Becker & Schram, 

1994; Beretvas & Furlow, 2006; Cheung & Chan, 2005; Hafdahl, 2001, 2007, 2009; 

Shadish, 1996; Viswesvaran & Ones, 1995).  

As noted by Shadish (1996), meta-analysis has long been focused on describing 

single effects, and this practice had “severely limited its capacity to contribute to one of 

the most fundamental tasks of science --- the development of explanatory theories.” (p. 

48). He suggested that researchers should conduct „causal mediating modeling‟ (which 

uses the path analysis techniques and structural equation modeling (SEM) techniques) to 

address this issue. 

Cheung and Chan (2005) used the term “Meta-analytic Structural Equation 

Modeling (MASEM)” as a general description for these techniques. They suggested that 

more specific techniques, like meta-analytic path analysis which does not consider latent 

variables, and meta-analytic confirmatory factor analysis which considers only the 

measurement model can be considered as special cases of MASEM. Other researchers 

have used similar terminologies to describe similar procedures, for instance, meta-

analytic path analysis (Colquitt, LePine, & Noe, 2000), meta-analysis of factor analysis 

(G. Becker, 1996). 

Generally there are two steps involved in MASEM: the first step is the synthesis 

of correlation coefficients across studies; the second step is to apply structural equation 

modeling techniques to explore the relationship among variables using the pooled 

correlation matrix (Viswesvaran & Ones, 1995). There are several different methods to 

choose from in either stage of MASEM. At the first step, univariate and multivariate 

methods have been proposed for synthesizing the correlation coefficients. The univariate 

methods proposed by Hedges and Olkin (1995) weight each effect size by its sampling 

variance and then synthesize the weighted effect sizes. Hedges and Olkin (1985) also 

suggested using Fisher‟s z transformation to normalize and stabilize the variance of the 

correlation coefficients. Hunter and Schmidt (1990, 2004) proposed to meta-analyze the 

correlation coefficients using a sample-size-weighting scheme. These univariate methods 
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ignore the covariation among the correlation coefficients, thus may lead to inaccurate 

estimation of parameters and standard errors.  

Multivariate methods of synthesizing correlation matrices have also been 

proposed by several researchers (e.g., Becker, 1992, 1995; Becker & Fahrbach, 1994; 

Cheung & Chan, 2005; Hafdahl, 2001, 2007). Unlike the univariate methods, the 

multivariate methods consider the dependence of the correlation coefficients in the 

correlation matrices.  

At the second stage of MASEM, Becker (1992, 1995) proposed a direct 

computation method based on Generalized Least Squares (GLS) for linear models and 

path analyses using the synthesized correlation matrix and its asymptotic covariance 

matrix. Cheung (2002) used common SEM software packages (i.e., LISREL, Jöreskog & 

Sörbom, 1999) to fit path analytic models and confirmatory factor analysis models using 

the pooled correlation matrix and its asymptotic covariance matrix from the first step. 

Cheung and Chan (2005) called this method the „Two-stage Structural Equation 

Modeling‟ (TSSEM) approach. 

Several studies have addressed other important issues in MASEM, for example, 

missing data and analyzing correlation matrices rather than covariance matrices using 

structural equation models (e.g., Furlow & Beretvas, 2005; Beretvas & Furlow, 2006; 

Cheung & Chan, 2009). 

To date, only a few studies have examined the performance of the aforementioned 

methods in the second stage of MASEM (e.g., Cheung, 2002, 2005; Furlow & Beretvas, 

2005). No study to date has examined the performance of Becker‟s (1992, 1995) direct 

computation method as opposed to the meta-analytic path-analysis method proposed by 

Cheung (2002). 

 

Fixed-Effects Model vs. Random-Effects Model 

 

Hedges and Vevea (1998) described the distinction between fixed- and random-

effects models. In the fixed-effects models, all the effect sizes are assumed to share an 

unknown but constant population effect size, thus there is one common population 

parameter for all effect sizes in the meta-analysis, thus we say that all the study effect 
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sizes are homogeneous. On the other hand, random-effects models assume a distribution 

of the population effect sizes, thus the population effect sizes differs randomly from study 

to study. The population effect sizes can be thought of as a sample from a universe of 

possible effects, that is, a „super/hyper population‟ (Becker, 1996; Hedges, 1992). Then, 

the studies are heterogeneous in this situation. Usually, random-effects models are 

thought to be more realistic in practice, especially when the researchers want to 

generalize the results to a broad domain rather than the studies in hand (see Hedges & 

Vevea, 1998). Statistically, the main difference between these two types of models is the 

error variance associated with the synthesized effect size: the error term in a fixed-effects 

model contains only within-study variations, while the error term in a random-effects 

model contains both within- and between-study variations. 

The TSSEM (Cheung & Chan, 2005) approach assumed a fixed-effects model for 

the synthesis of correlation matrices and provided no obvious means of modeling 

random-effects models. Becker (1992, 1995) also described a method for the random-

effects model using a GLS approach. However, this GLS method for the random-effects 

model has not been further and subsequently studied. To the best of my knowledge, how 

random-effects models affect parameter estimation at the second stage of MASEM has 

not been explored using either of the multivariate methods described above.  

 

Purpose of the Dissertation 

 

The first main purpose of this dissertation is to compare Becker‟s GLS approach 

(1992, 1995) and Cheung and Chan‟s (2005) TSSEM approach for meta-analytic path 

analyses. Specifically, the GLS methods and TSSEM methods will be used in 

synthesizing the correlation matrices. The resulting pooled correlation matrices are then 

subject to the path modeling with Asymptotic Distribution-free (ADF) estimation as the 

estimation method, and path modeling using Becker‟s (1992) direct computation method. 

Given the fact that a random-effects model is more appropriate in many situations in 

practice, the second purpose of this dissertation is to explore the method of estimating 

path coefficients based on an average correlation matrix from the random-effects model 
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and compare the parameter estimates obtained using the GLS method and TSSEM 

method. 

Outline of the Chapters 

 

In Chapter II, I will introduce existing methods for synthesizing correlation 

matrices, especially the two multivariate methods: GLS approach and TSSEM approach. 

Path modeling processes using each of these two multivariate approaches are presented in 

Chapter III. In Chapter IV, I report several simulation studies to compare the parameter 

estimates of GLS and TSSEM approach under both fixed-effects models and random-

effects models. A real example of data analysis is presented in Chapter V to show how 

these methods are applied using real data. Finally, discussions and future research 

directions are presented in Chapter VI. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

Meta-analytic Structural Equation Modeling (MASEM) techniques have been 

increasingly applied in research fields in psychological, educational and behavioral 

sciences. For example, Colquitt, Scott, and LePine (2007) used a meta-analytic path 

analysis to examine the relationship between trust variables, risk taking, and job 

performance. Whiteside and Becker (2000) applied a model-driven meta-analysis to 

examine the relationship among parental factors and child‟s postdivorce adjustment. 

Brown et al. (2008) applied a meta-analytic path analysis to understand the social 

cognitive predictors of college students‟ academic performance and persistence.  

Generally, MASEM involves two steps in analyses. At the first step, correlation 

matrices are synthesized across studies and at the second step, path analysis, factor 

analysis or structural equation modeling techniques are applied to analyze the pooled 

correlation matrix. A series of methods have been developed for each of the steps. 

Univariate and multivariate methods have been proposed to synthesize correlation 

matrices across studies at the first step. With univariate meta-analysis, the correlation 

coefficients in the correlation matrix are treated as independent and the correlations 

among them are ignored (e.g., Schmidt, Hunter & Outerbridge, 1986). Basically, meta-

analysis is applied to each element of the correlation matrix and then the synthesized 

correlation coefficients form a pooled correlation matrix. Probably the most widely used 

univariate methods are those proposed by Hedges and Olkin (1985) and Hunter and 

Schmidt (1990, 2004). Both of these univariate approaches provide methods of 

synthesizing a single correlation coefficient per study, yielding point and interval 

estimates as well as testing homogeneity of the correlations.  

Multivariate methods for synthesizing correlation matrices consider the 

dependency among the correlation coefficients in the correlation matrix. The variance 

and covariance matrix among the correlation coefficients is obtained and used in 

synthesizing the correlation matrices. Later analyses of the pooled correlation matrix 
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(e.g., exploratory/confirmatory factor analysis, path modeling or linear models) then 

account for this dependence. Becker (1992, 1995), Becker and Schram (1994), Cheung 

and Chan (2005), and Furlow and Beretvas (2005) illustrated a range of multivariate 

techniques to account for the dependence among the elements of the correlation matrices. 

In this section, I will summarize available univarate and multivariate methods of 

synthesizing correlation matrices, especially the multivariate methods proposed by 

Becker (1992), Becker and Schram (1994), and Cheung and Chan (2005). 

 

Univariate Methods for Synthesizing Correlation Matrices 

 

Hedges and Olkin (1985) introduced methods for synthesizing bivariate 

correlation coefficients with fixed-effects and random-effects models. Denote ri as the 

observed correlation coefficient in study i, ki ,...,1 . Assuming a fixed-effects model, 

the effect size can be expressed as 

ii er  

where  is the population correlation coefficient and ei is the sampling error in study i. 

Assume that 
ie is distributed normally with mean of zero and variance 

2

i . The variance 

2

i is the within-study variance and usually assumed known in meta-analysis.  

Before averaging the correlation coefficients, a homogeneity test is usually 

conducted to test if the correlation coefficients are the same in the population. Under the 

null hypothesis
k...21 , Hedges and Olkin (1985) showed that the test statistic 

for testing homogeneity of the correlation coefficients is 

k

i

iiHOr rrwQ
1

2.)( . 

where 2/1 iiw is the weight and k is the total number of studies, and r. is the weighted 

mean effect size. Under the null hypothesis, the QHOr statistic has an approximate chi-

square distribution with (k-1) degrees of freedom. The weighted average of the effect 

sizes 
ir is calculated as: 



 8 

k

i

i

k

i

ii

w

rw

r

1

1. . 

The sampling variance of the mean effect size r. is the reciprocal of the sum of the 

weights in each study, that is, 

./1.)(
1

k

i

iwrVar  

It is known that the sampling distribution of correlation coefficients is skewed 

when the population correlation coefficients deviates from zero. Hedges and Olkin (1985) 

proposed to use Fisher‟s z transformation when averaging the correlation coefficients, 

where 

)
1

1
log(

2

1

r

r
z , 

where z represents the transformed raw correlation coefficient r, and log(.) is the natural 

logarithm. The test for the hypothesis that the transformed correlation coefficients are 

equal in the population is 

k

i

iiHOz zznQ
1

2.))(3( , 

where zi is the transformed correlation coefficients in study i, and z. represents the 

averaged correlation in the z metric. The mean z. can be expressed as 

k

i

i

k

i

ii

w

zw

z

1

1. ,  

where )3( ii nw , with ni being the sample size in the ith study and k the total number 

of studies. The sampling variance of the z-transformed correlations now depends only on 

the sample size, that is, 

)3(

1
.)var(

in
z . 

The mean z. can be transformed back to the metric of the correlation coefficient by 
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1.)2exp(

1.)2exp(
.

z

z
r . 

Hunter and Schmidt (1990, 2004) computed the average correlation coefficient r  

by weighting each correlation coefficient by the study sample size. That is, 

k

i

i

k

i

ii

n

rn

r

1

1  

where the ni and ri are the sample size and sample correlation coefficients in each study 

as defined above. 

The test statistic used by Hunter and Schmidt (1990) is  

k

i

ii

HSr
r

rrn
Q

1
22

2

)1(

))(1(
. 

It is asymptotically distributed as a chi-square with (k-1) degrees of freedom under the 

null hypothesis (see Hunter & Schmidt, 1990, pp.110 – 112).  

There has long been a controversial view regarding if transformed or 

untransformed correlation coefficients should be used in meta-analysis (e.g., Hedges & 

Vevea, 1998; Hunter et al., 1996; Silver and Dunlap, 1987). Field (2001) reported several 

simulation studies to compare Hunter and Schmidt‟s correlation method (HSr) and 

Hedges and Olkin‟s Fisher r to z method (HOz) with both homogeneous and 

heterogeneous data. He found that both methods produce comparable mean estimates 

under the fixed-effects model, that is, when the correlations are homogeneous. However, 

he found that the HSr method was too liberal in controlling the Type I error rate for the 

significance test. He also concluded that for the heterogeneous cases, the HOz method 

produced biased estimate of the mean effect size, rather the HSr method gave relative 

accurate estimates. Field‟s (2000) study was cited by Hunter and Schmidt (2004) as 

evidence that Fisher-z transformation should not be applied. However, Hafdahl and 

Williams (2009) revisited the simulation conditions by Field (2001, 2005) and concluded 

that the “cautions about poor performance of Fisher-z method are largely unfounded, 

especially with a more appropriate z-to-r transformation” (p. 24). An alternative integral 

z-to-r transformation was given by Hafdahl (2009). 
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Hedges and Olkin (1985, p. 108) pointed out that most procedures available for 

meta-analysis assume that the outcomes to be analyzed are independent. With univariate 

methods for synthesizing correlation matrices, covariation among the correlation 

coefficients is totally ignored. However, these correlations are actually correlated to a 

certain extent (Olkin & Siotani, 1976). Problems may arise when dependence among the 

correlation coefficients is ignored or handled inadequately. Becker (2000) pointed out 

that “one common consequence of ignoring dependence is a possible effect on Type I 

error level and accuracy of probability statements made for the observed data…… This 

can be manifest via the values of estimates and standard errors; thus dependence can also 

affect bias and precision in estimation as well.” (p. 503). The better strategy is to consider 

the dependence among the elements of correlation matrix in synthesizing correlation 

matrices across studies. To model the dependence among effect sizes, several approaches 

have been proposed (e.g., Becker, 1992, 1995; Gleser & Olkin, 1994; Hedges & Olkin, 

1985; Kalaian & Raudenbush, 1996; Raudenbush, Becker & Kalaian, 1988). These 

techniques all require that the information of the correlations among the effect sizes be 

incorporated into the analysis. Specifically, several researchers have proposed or studied 

multivariate methods for synthesizing correlation matrices (e.g., Becker, 1992, 1995; 

Beretvas & Furlow, 2006; Cheung & Chan, 2005; Hafdahl, 2001, 2007).  

 

Multivariate Methods for Synthesizing Correlation Matrices 

 

Generalized Least squares (GLS) Method  

            Becker (1992, 1995) uses generalized least squares (GLS) estimation techniques 

to model the dependency between correlations when pooling correlation matrices. For 

each study i with sample size ,,...,1 , kini
 across k independent studies, there are 

2/)1( ppp distinct correlation coefficients among p multivariate normally 

distributed variables. For ease of introduction, we assume that there is no missing data in 

each study. However, this notation can be extended readily to studies with incomplete 

data (see Becker, 1992). For example, with p = 4 outcomes, we obtain 

62/)14(42/)1( ppp distinct correlations for each study. Thus ri,  ki ,...,1 , 
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is a column vector which contains these six observed correlations. Denote the 
ir  as the 

estimate of the population correlation vector
iρ . Thus the model 

iii eρr                                                                                                      (2.1) 

expresses the variation of the observed correlations around their population values. 

Assume that ),0(~ * iPi N Ve , where 
iV is the variance-covariance matrix of the observed 

correlations. The dimension of 
iV is here 66or  ** pp . Olkin and Siotani (1976) 

derived the large-sample normal approximate variance and covariance matrix for a vector 

of correlation estimates. For study i, the large-sample population variance of the 

correlation estimate between variable s and t in study i, rist is 

2 2(1 )
( ) ist

ist

i

Var r
n

,                                                                                     (2.2) 

 with 
ist

being the population correlation and ni being the sample size for study i. The 

large-sample covariance, ( , )ist iuvCov r r between correlations 
istr and 

iuvr is 

2 2 2 2( , ) [0.5 ( )

( )] /

ist iuv ist iuv isu isv itu itv isu itv isv itu

ist isv isu its iiu itv ius iut iuv ivs ivt ivu i

Cov r r

n
      .        (2.3) 

 Since the population parameter,
ist

, is unknown, the standard approach for obtaining the 

estimates of the variance and covariances for the correlations is to substitute sample 

estimates, 
istr , for the corresponding population values and then treat 

iV as known. In 

theory, the use of GLS for synthesizing correlation matrices should result in more 

accurate estimates because it accounts for the dependency among correlation coefficients. 

However, previous research (e.g., Becker & Fahrbach, 1994; S. F. Cheung, 2001; 

Hafdahl, 2007) showed that this traditional GLS approach performed poorly comparing 

to the univariate approaches for the estimation of the pooled correlation matrix. 

Researchers have proposed different modifications of the original GLS method. For 

example, Becker and Fahrbach (1994) noted that using a mean correlation coefficient in 

Equation 2.3 was superior to the substitution using a sample correlation coefficient when 

the fixed-effects model was applied. Since the sample correlation coefficients contain 

measurement and sampling errors, the averaged correlation is a more reliable estimate of 

each population correlation (Furlow & Beretvas, 2005). Specifically, Becker and 
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Fahrbach (1994) used a sample sized weighted mean jr , for j = 1 to p*, to substitute the 

population correlation coefficients in Equation 2.2 and Equation 2.3. The estimate of jr  

was calculated as: 
i

k

i

jij nrr /
1

, where * ..., 2, ,1 pj . 

Define r as the kp  dimensional vector created by stacking up the correlation 

matrices from k studies, for example, with k = 5 studies we stack the  16 ir s into the 

130  outcome vector r: 

5

1

r

r

r

.

.

.

.                                                                                                         (2.4) 

The ** kpkp block-diagonal matrix V is formed by placing the k Vi matrices on 

the diagonal, that is, ),...,( 1 kdiag VVΣ , in this example 

5

1

0

0

V

V

V







.                                                                                     (2.5) 

Next let X be the design matrix consisting of k stacked p*  p* identity matrices. 

In this example 

1000

000

0010

0001

..........

1000

000

0010

0001

5

1





X

X

X

.

.

.

                                                                           (2.6)                  

To test the hypothesis of homogeneity of correlation matrices across k studies, 

that is, to test 
kH ρρρ ... : 210 , use the test statistic  

rVXX)VXXVVr ]([ 11111
Q .                                                        (2.7) 
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Under the null hypothesis, Q has approximately a chi-square distribution with  

(k-1)p* degrees of freedom (Becker, 1992; Hedges & Olkin, 1985). If the test is not 

significant, which means that the population correlation matrices are homogeneous, a 

pooled correlation matrix can be obtained by using the GLS method, specifically 

 r. = rVXX)VX 1111( .                                                                             (2.8) 

The approximate variance-covariance matrix of the estimate is  

11X)V(XV(r.) ' .                                                                                        (2.9) 

It can be used to construct large-sample confidence intervals for the elements of the 

correlation matrix. 

The GLS approach can be extended using Fisher‟s z transformation. The 

asymptotic covariance matrix of the transformed z values can be estimated by formulas 

provided in Steiger (1980). Becker and Fahrbach (1994) gave the pooled matrix of z 

values and they suggested that the performance of GLS using Fisher z scores was better 

than the GLS method using raw correlation coefficients in estimating the pooled 

correlation matrix. They also noted that the asymptotic covariance matrix of Fisher z 

scores cannot be easily transformed into the asymptotic covariance matrix of correlation 

matrix. Fouladi (2000) proposed an alternative approach to model Fisher z scores with 

their asymptotic covariance matrix directly. However, the interpretation of the parameter 

estimates gets really complicated because the metric is in Fisher z scores rather than 

correlations. To focus on the comparison of the methods on synthesizing raw correlation 

coefficients and modeling pooled correlation matrix, the Fisher- z score transformation is 

not explored in this dissertation. 

Sometimes we assume that there is variation among the population correlation 

vectors across studies. The between-studies model reflects this variation. For a fixed-

effects model, which assumes that an underlying population correlation matrix is 

common to all studies, the model is ρρi
. For a random-effects model, which assumes 

that the population parameters are random samples from a hyper-population, the model 

is ii uμρ , whereμ denotes the mean population correlation, 
iu reflects between-

study variation, and ),(~ * ȉ0u pi N , with ȉ being the between-studies covariance 
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matrices. Thus, combining the within-study and between-studies models, we get the 

fixed-effects model 

  ,ii eρr  

and the random-effects model 

 iii euμr . 

 One pervasive problem in the synthesis of correlation matrices is missing data. It 

is not likely for every study to report each element in the correlation matrix. Thus, 

dealing with missing data is an important concern in applying these multivariate methods. 

Becker and Schram (1994) suggested substituting sample estimates (such as means across 

studies) for missing population correlations in equation 2.3. Then one can modify 

equations 2.4-2.6 by essentially deleting the columns and rows of the matrices 

VXr  and  , that correspond to missing values. Researchers have examined the missing 

data problem in synthesizing correlation matrices and given suggestions (e.g., Becker & 

Schram, 1994; Furlow & Beretvas, 2005). Missing not at random data seems to affect the 

precision of the correlations as well as the model parameters at the second stage of 

MASEM using either the univariate approaches or the multivariate approaches of 

MASEM. Since there is little evidence that missing data will particularly impact certain 

multivariate approach in the previous research, in this dissertation, the missing data issue 

is not considered for the methods comparison. 

 

Two-Stage Structural Equation Modeling (TSSEM) Method 

 Cheung and Chan (2005) proposed a two-stage approach for meta-analytic 

structural equation modeling (TSSEM). At the first stage, correlation matrices are tested 

for homogeneity and the pooled correlation matrix and its asymptotic covariance matrix 

are estimated. At the second stage, the pooled correlation matrix is analyzed and its 

asymptotic covariance matrix is used as the weight matrix in a structural equation 

analysis with the asymptotic distribution-free (ADF) method as the estimation method. 

To test the homogeneity of correlation matrices and estimate a pooled correlation 

matrix, the authors apply a multiple-group confirmatory factor analysis (CFA) method 

(see Jöreskog & Sörbom, 1993). The models below are written based on the observed 

variables, i.e., raw data. Correlation matrices are more often reported than covariance 
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matrices in meta-analysis. Hunter and Schmidt (1990) pointed out that comparing the 

standardize metric (correlation matrix) across studies is more interpretable and preferable 

in many situations. The correlation matrix of these observed variables is of interest in this 

project. 

Let xi be a 
ii np observed vector of the raw data and 

i
be its 

ii pp population 

covariance matrix in the ith study, where 
ip is the number of observed variables, i =1,…, 

k and ni is the sample size for study i. Since not every study reports p variables, 
ip can be 

less than or equal to p.  

The covariance matrix 
iΣ can be decomposed into the matrices of standard 

deviations and correlations, 

iiii DRDΣ ,                                                                                        (2.10) 

where Di is the 
ii pp diagonal matrix of standard deviations with '

iD  its transpose, and 

Ri is the 
ii pp  correlation matrix in the ith study where Diag[Ri] = I. 

In a confirmatory factor analysis (CFA), the observed vector xi is hypothesized to 

be a function of
iȁ ,

iξ and 
iδ . Specifically,

iiii δξȁx , where
iȁ is the factor loading 

matrix, 
iξ is the latent factor vector and 

iδ is the error vector. By assuming that the errors 

are uncorrelated and have a mean of zero, the covariance matrix 
iΣ of the observed 

variables x can be expressed as 

iiiii ΘȁΦȁΣ ,                                                                              (2.11) 

where Φi is the latent factor covariance matrix, and 
iΘ is the error covariance matrix. By 

imposing constraints on model parameters, Equation 2.11 can be used to test hypotheses 

about the covariance matrix of the observed variables through the latent factor covariance 

matrix (Raykov, 2001). For example, suppose
ipi Iȁ and ppi 0Θ , where pI is the 

 p p identity matrix and p p0 is the  p p zero matrix, then Equation 2.11 simplifies to 

a special case: iΣ  = Φi .                                                                                                           (2.12)       

Raykov (2001) pointed out the model 2.12 “can be seen as resulting after q = p 

dummy latent variables ξ1, ξ2,…, ξp are introduced, which equal each a corresponding 
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observed variable, namely, ξi = xi (i = 1,…, p).” (p. 226). It is a basic model in testing 

multivariable covariance structure hypotheses because the observed covariance matrix Σ 

is equal to the latent covariance matrix Φ after these constraints and each of its elements 

in the latent construct is now accessible to the researcher. Figure 2.1 depicts this „null‟ 

model. 

With a further extension of the specifications, Cheung and Chan (2004) specify 

that if
iȁ is a 

ii pp diagonal matrix, Φi is a 
ii pp standardized matrix, and 

iΘ is a 

ii pp zero matrix, then Equation 2.10 is equivalent to Equation 2.11.  

Under the above constraints the factor correlation matrix is equivalent to the 

observed correlation matrix, and testing hypotheses about the factor correlation matrix is 

equivalent to testing the hypotheses about the correlation matrix for the observed 

variables. We can see that the amount of information in the model across k studies 

is
k

i

ii pp

1 2

)1(
, where 

ip is the number of variables in the ith study. The number of free 

parameters in estimating the correlation across different studies is
k

i

ii pp

1 2

)1(
, so the 

number of free parameters in estimating the standard deviation matrices is
k

i

ip
1

. Thus, 

the degree of freedom equals the amount of information minus the number of free 

parameters, i.e, df = 
k

i

ii pp

1 2

)1(
-[

k

i

ii pp

1 2

)1(
+

k

i

ip
1

] = 0. Thus fitting the model in 

equation 2.10 to the observed data will lead to a perfect fit with df = 0, and the parameter 

estimates will equal to the observed data. Here the correlation matrix is used as a 

covariance matrix. Since the standard deviation matrix Di
 
contains information about 

scale, the estimate of the Ri matrix will presumably be the same using either the 

correlation or covariance matrix as input matrix (Cheung & Chan, 2005, p. 45). 
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Figure 2.1 The „null‟ model where the observed correlation matrix is equal to the latent 

correlation matrix 

 

Assuming that all population correlation matrices are from the same population, 

that is, 
kH ρρρ ... : 210 , multiple-group SEM techniques can be used to obtain the 

pooled correlation matrix. Multiple-group SEM (also called multiple-sample SEM) is a 

technique to address the question that whether values of model parameters vary across 

groups (Kline, 2005). Usually in MASEM an SEM computer program is used to perform 

this analysis which simultaneously estimates a model across all samples. Through the 

specification of cross-group equality constraints, group differences on any individual 

parameter or set of parameters can be tested. First, constrain the factor correlation 

matrices Φi to be equal across studies. The number of between-study constraints is then 

14

12 3423

1  2  3  4  

x1 x2 x3 x4 

1 1 1 1 

0 0 0 0 

13 24

12r 23r 34r

13r

14r

24r



 18 

.
2

)1(

2

)1(

1

ppppk

i

ii  

The test statistic is asymptotically distributed as a chi-square with degrees of freedom 

.
2

)1(

2

)1(

1

ppppk

i

ii  When all studies have all p variables, this equation turns into: 

*)1(2/)1()1( pkppk . Note that the degrees of freedom is the same as that of the 

multivariate Q test as described in Equation 2.7. A chi-square difference test is conducted 

to compare this model with constraints to the model without constraints (the model with 

df = 0).  If the fit of the constrained model is not significantly worse than the model 

without constraints, the correlation matrices will be treated as homogeneous. Then a 

pooled correlation matrix estimate R (i.e., the reproduced correlation matrix) and its 

asymptotic covariance matrix VR can be computed. 

Next, the pooled correlation matrix R and its asymptotic matrix VR are used as 

input in the second step to do path analysis, confirmatory factor analysis or to compute 

structural equation models. The pooled correlation matrix R is a pp matrix and its 

asymptotic matrix, VR, is a 2/)1(2/)1( pppp  or ** pp matrix. For example, if R 

is a 44 matrix, then the r vector has 62/)1( pp  distinct correlation coefficients and 

is created by stringing out the lower triangle of the R matrix. Thus, the asymptotic matrix 

VR incorporates the variances and covariances among these 6 distinct correlations, and 

results in a matrix of dimension 66 . The total sample size N equals
k

i

in
1

. By using an 

ADF estimation method, a proposed model on the pooled correlation matrix can be 

tested. The model is )(ȍRR , and )(ȍR represents a correlation structure model with 

parameters ȍ (for example, )(ȍR can be a correlation structure of a path analysis model 

or a full structural model). The fit function is then 

))(())(()(
1 ȍrrVȍrrȍ R

T
F ,                                                              (2.13) 

where r and ȍr( ) are the 1*p vectors of 2/)1(* ppp elements obtained by 

stringing out the lower triangular elements of the correlation matrices R and )(ȍR , 

respectively. The weight matrix VR is the asymptotic covariance matrix of the pooled 
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correlation matrix R. Equation 2.13 is equivalent to the overall Q test in GLS method 

when )(ȍR = r., while the weight matrices are different for these two methods. 

Cheung (2002) gave three reasons for using ADF, instead of maximum likelihood (ML) 

or GLS as the estimation method at the second stage of the TSSEM approach. First, since 

the total sample size N = 
k

i

in
1

 is used in the second stage and it is generally large 

enough for ADF to lead to correct inferences. One reason for using the total sample size 

in the second stage is that it will increase the statistical power (Hedges & Pigott, 2001). 

Second, the sampling variation among studies is reflected in the weight matrix VR
-1

, with 

less (more) weight being given to those with large (small) amounts of sampling variation. 

Third, since the statistical theory of structural equation modeling is based on the 

distribution of covariance instead of correlation, it is generally not appropriate to apply 

covariance distribution theory without adjustment (Cheung, 2002, p. 53). Thus, ADF is 

more appropriate as the estimation method when a correlation matrix instead of a 

covariance matrix is used as input for stage 2 analyses. The minimum of )()1( ȍFN is 

asymptotically distributed as chi-square with ( qp * ) degrees of freedom, where N is the 

total sample size and q is the number of free parameters.  

 

GLS Method and TSSEM Method Comparisons 

 Both GLS and TSSEM methods are multivariate methods which model the 

dependence among correlation coefficients and both methods involve correlations among 

the correlation coefficients and the asymptotic variance matrix of the pooled correlation 

matrix. Cheung (2002) pointed out that the main differences between these two methods 

are due to their statistical methods. For example, with the GLS method, Olkin and 

Siotani‟s (1976) equation given in equation 2.3 above is used as the asymptotic 

covariance matrix of the correlation matrix based on the large sample distribution theory 

for correlations, and a GLS approach is used in the second stage to estimate the pooled 

correlation matrix. The TSSEM method is based on covariance distribution theory to 

estimate the pooled correlation matrix by treating the diagonals as parameters that need to 

be estimated. As pointed out by Cudeck (1989), analyzing a correlation matrix as a 

covariance matrix may produce incorrect chi-square statistics, goodness-of-fit indices and 
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incorrect standard errors. One approach to analyzing the correlation matrix directly with a 

correlation structure is to use ADF estimation based on Equation 2.13 with which a 

modification of Browne (1984)‟s ADF method is applied.  

 

Comparison of Methods for Meta-analysis of Correlation Matrices 

 

To date, several research papers have examined the performance of the different 

univariate and multivariate methods of synthesizing correlation matrices (e.g., Becker & 

Fahrbach, 1994; S. F. Cheung, 2000; Cheung & Chan, 2005; Hafdahl, 2007; Hafdahl, 

2008). Cheung and Chan (2005) found that the univariate methods (Hedge & Olkin, 

1985; Hunter & Schmidt, 1990, 2004) control Type I error well in testing the 

homogeneity of the correlation matrices and the biases of parameter estimates are small, 

but they are too liberal in controlling the Type I error in the modeling process. Among 

the multivariate methods, different methods of estimating the pooled correlation matrix 

result in different values of the correlation matrix as well as different asymptotic 

covariance matrices. Becker and Fahrbach (1994) noted that the GLS method performed 

poorly in small to medium samples (say, sample sizes smaller than 250). Since the 

sample correlation contains both measurement and sampling errors, substituting the 

sample correlations for the population correlations in the variance-covariance matrix may 

lead to the inefficiency of the estimates of covariances between correlation coefficients. 

Becker and Fahrbach (1994) used the simple average of the relevant correlations for 

estimates of the population correlations in the covariance matrix and found that the 

precision of estimation improved. Similarly, S. F. Cheung (2000) used a sample size 

weighted correlation for the population correlation in formula 2.3. Both pieces of 

research found that the modified estimate of the population correlations outperform the 

traditional GLS approach. Specifically, S. F. Cheung (2000) found that the modified GLS 

approach has higher power in the chi-square test to reject the assumption of homogeneity 

of the correlation matrices when they were actually heterogeneous. Furlow and Beretvas 

(2005) did a simulation study to compare the performance of different methods for 

synthesizing correlation matrices for MASEM under different patterns of missing data. 

They compared the estimates of correlations and SEM parameters and model fit. They 
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used a variance weighted correlation as a substitute for the population correlation in the 

variance-covariance matrix and found that the modified method performed better for 

estimation of parameters and gave more accurate model rejection rates. 

Hafdahl (2007) examined several methods for synthesizing correlation matrices, 

which included univariate methods and multivariate methods (specifically, GLS 

methods). He substituted sample size weighted correlations for the population 

correlations in the Vi matrix. Also he expanded the conditions Becker and Fahrbach 

(1994) examined with some extensions. For example, a correlation matrix of p = 4 

variables instead of p = 3 was used and the within-study sample sizes were varied. The 

sample sizes were drawn from a positively skewed distribution which was considered 

typical in research syntheses (Osburn & Callender, 1992). He concluded that sampling 

error in observed correlations is the most important reason for the GLS method to 

perform poorly, as reported in Becker and Fahrbach (1994). He wrote “Fisher‟s z-

transformation improved performance and was necessary to maintain multivariate 

homogeneity rejection rates at nominal --- due perhaps to homogeneity tests‟ greater 

reliance on normality via their quadratic forms --- but was less effective than the 

estimated population correlation refinement.” (Hafdahl, 2007, p. 198) 

Among the aforementioned research, two studies of GLS methods (Becker & 

Fahrbach, 1994; Hafdahl, 2007) compared methods of synthesizing correlation matrices 

under the fixed-effects model with homogeneous data. Two studies (Cheung & Chan, 

2005; S. F. Cheung, 2000) examined the homogeneity test with both homogeneous and 

heterogeneous data. One study (Hafdahl, 2008) examined the meta-analytic methods for 

correlation matrices using heterogeneous data. They all assumed a fixed-effects model for 

their analyses. That is, a single population correlation matrix is assumed to underlie all 

the correlation matrices. However, this assumption will be challenged in practice given 

that studies are often heterogeneous. Thus random-effects models may be more realistic 

in practice. 

A random-effects model for the synthesis of correlation matrices has been 

described by Becker (1992, 1995). Recently, Prevost et al. (2007) considered different 

methods for allowing for correlations between correlation coefficients, including 

generalized least squares (GLS), maximum marginal likelihood, and Bayesian 
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approaches using a random-effects model. They examined the quantities of the mean 

population correlation matrix, contrasts between the mean correlations and the prediction 

of a correlation matrix in a new study. They concluded that compared to the univariate 

methods, considering the correlations among the correlation coefficients would have little 

impact on the individual estimates of the correlation coefficients. However, for the 

composite measure of the correlation matrix or overall hypothesis testing about the 

correlation matrix and the successive analyses of the correlation matrix, multivariate 

methods can have notable impact. In particular, the authors compared the correlation 

coefficients estimates from eight estimation methods with a real example.  They 

examined random-effects method using non-iterative GLS, a random-effects method 

using maximum marginal likelihood, and a random-effects method using Markov chain 

Monte Carlo (MCMC). They concluded that the GLS methods (both iterative and 

noniterative), “can lead to inappropriate answers that are due in part to the lack of a check 

on the appropriateness of the estimate of the between-study random-effects covariance.” 

They recommended a model-based maximum marginal likelihood approach or a full 

Bayesian analysis. 

Moderator analysis has not been examined in most of the studies discussed above, 

though Hafdahl (2007) pointed out that several complex models would be readily 

appropriate, for example, fixed-effects models with study characteristics, random-effects 

models and mixed-effect models. These models were examined using treatment-type 

effect sizes in Kalaian and Raudenbush (1996). 

 

Synthesizing Covariance Matrices in Meta-Analytic SEM 

 

 Beretvas and Furlow (2006) pointed out that it is generally not appropriate to use 

a pooled correlation matrix as the input for the second stage in MASEM, since common 

SEM programs are all based on the analysis of a covariance matrix. Cudeck (1989) 

delineated the potential problems of applying statistical theory applicable for covariance 

structure analysis to correlation matrices. Specifically, he pointed out that the chi-square 

test of model fit (and thus associated fit indices) and the standard errors associated with 
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path coefficients would be impacted when the model under analysis is not scale-invariant. 

Beretvas and Furlow (2006) explained the concept of „scale invariant‟ as follows: 

 

“The concept of scale invariance can be best explained through the use of a 

confirmatory factor analysis (CFA) example, although the concept applies to the family 

of models fitting within SEM. First, the covariance matrix of observed variables being 

factor-analyzed can be decomposed into the model‟s parameters. Thus, under the general 

factor analysis model, the covariance matrix, )( , based on a vector of parameters, , 

can be decomposed into a function of the factor loadings‟ matrix, , the factor 

covariance matrix, , and the matrix of errors, , such that ')(  . The 

definition of scale invariance is that “any rescaling of a covariance matrix, result in 

another covariance matrix that also satisfies the model” (Cudeck, 1989, p. 319). 

Specifically, a scale-invariant will result if there exists a diagonal matrix, D (with no 

zeros along its diagonal), such that a different covariance matrix, , for the vector of 

rescaled parameters * , exists where DD )(*)( ” (p. 155). 

 

If, however, a model is scale invariant then only the standard error estimates for the 

parameters that are not „scale free‟ would be affected. Here, „scale free‟ refers to the 

property that the values of the parameter estimates remain the same regardless of the 

rescaling of the covariance matrix (Beretvas & Furlow, 2006, p. 155). Given the fact that 

many of the models examined by MASEM researchers are not scale invariant, Beretvas 

and Furlow (2006) argued that the model-fit criteria based on the chi-square statistic as 

well as the standard errors of parameters which are not scale free might not be correct. 

With this concern in mind, they applied the synthesis of standard deviations of the 

observed variables along with the synthesis of correlation matrices. Therefore, an 

approximation to a synthesized covariance matrix was obtained from synthesized 

correlations and synthesized standard deviations.  

It is not known how practical this method will be in applied research since another 

layer of information is needed for implementation of this approach, that is, the standard 

deviations of the observed variables. Beretvas and Furlow (2006) also discuss the 

potential problems using the pooled correlation matrix in standard SEM programs (as 
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pointed out in Cudeck, 1989). Even with the ability of some programs (e.g., LISREL, 

Mx) to correct for the standard errors of the parameters, the model-fit criteria based on 

chi-square test may still not correct for the non-scale-invariant models. Cheung and Chan 

(2009) also proposed a two-stage approach to synthesizing covariance matrices, which is 

the extension of the Cheung and Chan (2005) TSSEM method. 

Though different methods of synthesizing correlation matrices have been 

proposed by many researchers, performance differences among these methods for further 

analyses of various functions of the synthesized correlation matrix are not well studied. 

Becker (1992) proposed a procedure for analyzing the pooled correlation matrix to obtain 

linear models. Cheung and Chan (2005) proposed techniques for analyzing confirmatory 

factor analyses and structural equation models. How these methods of meta-analyzing 

correlation matrices differ at the stage of the modeling process is my primary interest in 

this research. 

Specifically, path analyses use the correlation matrix as the input. Becker (1992) 

described a direct computation method which produces estimates of path coefficients and 

standard errors based on the average correlation matrix. This approach may not have the 

potential problems associated with applying correlation matrices instead of covariance 

matrices with SEM software packages. The comparison of methods for this modeling 

process versus the MASEM approach is described in chapter III. 
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CHAPTER III 

 

METHODOLOGY 

 

In the previous chapter, methods of pooling correlation matrices across 

independent studies were described. Recently developed methods for meta-analytic 

structural equation modeling were also introduced. My primary goals in this dissertation 

are to apply and compare the multivariate methods of synthesizing correlation matrices 

and meta-analytic path analyses using a direct computation method (Becker, 1992) and 

the TSSEM method of Cheung and Chan (2005). I will examine the overall homogeneity 

tests of these methods at the first step and compare the parameter estimates and standard 

errors of the path coefficients from these two methods at the second step. Suggestions 

regarding the limitations and advantages of each method will be given. The method of 

estimating path coefficients based on an average correlation matrix from the random-

effects model will be explored as well, given the fact that a random-effects model is 

probably more appropriate in many situations in practice. Since the SEM method with 

maximum likelihood estimation as the second-step estimation method is used in many 

meta-analytic path analyses, it will also be discussed to show the comparison of the 

parameter estimates with those from the GLS direct computation methods and the 

original TSSEM methods. 

 

MASEM using GLS Approach and TSSEM Approach 

 

Path analysis is an important analytical tool in testing and estimating causal 

relationships among observed variables. With the development of the general structural 

equation modeling techniques, path analysis has been widely applied and studied in the 

fields of education, psychology, politics and economics etc (Bollen, 1989). Recently, path 

analysis has been used in many research syntheses (e.g. Brown, Tramayne, Hoxha, 

Telander, Fan & Lent, 2008; Fried, Shriom, Gilboa & Cooper, 2008; Zimmerman & 

Darnold, 2009). Meta-analytic path analysis has been used by researchers to test their 
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hypotheses in the theoretical structures and whether the hypothesized causal models are 

consistent with the empirical findings from different studies. Shadish (1996) noted the 

importance of using causal mediating models like path analysis models to address 

research questions about theory development in meta-analysis. Though other types of 

meta-analytical structural equation modeling techniques has been employed in 

substantive research, for example, meta-analytic confirmatory factor analysis (e.g., 

Cheung & Au, 2006), so far meta-analytic path modeling is still the most frequently used 

techniques by the applied researchers. In this dissertation, meta-analytic path modeling is 

used interchangeably with the term MASEM. 

 Path analysis can be conducted as linear regression model (e.g., Pedhazur, 1997). 

More popularly, path analysis is treated as a subset of techniques in the general 

framework of structural equation modeling. Below I talk about estimating path models 

using both techniques. 

 

Direct Computation Method  

 

Pedhazur (1982, 1997) described a way of doing path analysis using regression 

models. Schmidt, Hunter, and Outerbridge (1986) applied this method to do a path 

analysis using the pooled correlation matrix. Path modeling is based on the correlations 

among the observed variables and uses the correlation matrix instead of the covariance 

matrix as an input matrix. S. F. Cheung (2000) pointed out that it is specifically 

developed for analyzing correlations. 

 The idea of using the regression method for obtaining path analysis results is to 

estimate a set of regression models for the individual paths in the path model. Consider 

model 1 in Figure 3.1 as an example.  
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Figure 3.1 Example path analysis model 1 

 

The model specified above is a recursive and just-identified (saturated) path 

model which has degrees of freedom equal to zero. A recursive model has two basic 

features: one is that all the causal effects are unidirectional and have no feedback loops 

between each other; the other is that the disturbances (error variances) are not correlated 

(Kline, 2005, p. 104). Having a just-identified model means that the amount of observed 

information in the model is equal to the number of parameters to be estimated. To get a 

unique solution for each parameter, the model has to be at least just-identified (df ≥ 0). 

Recursive path models are always identified (see Bollen, 1989, pp. 95-98).  

Let s be the number of endogenous variables and t be the number of exogenous 

variables. (The „endogenous variables‟ refer to the variables to be viewed as outcome, 

like „dependent variables‟, while „exogenous variables‟ refer to variables acting as  

predictors, like „independent variables‟ in linear models). The system of structural 

equations representing the model in figure 3.1 can be written as 

 

y = By + Гx + ζ                                                                                              ( 3.1) 

where y is a s×1 vector of observed endogenous variables, x is a t ×1 vector of exogenous 

variables, B is a s×s coefficient matrix that relates endogenous variables to each other, Г 

is a s×t matrix of coefficients that relates endogenous variables to exogenous variables, 

and ζ is a s×1 vector of disturbances, where cov(ζ) = Ψ is the s×s covariance matrix of 

the disturbances. The t×t covariance matrix for the exogenous variable is cov(x) = Φ. 
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For example, the number of pieces of observed information in model 3.1 is 

4(4+1)/2 = 10, and the parameter set being estimated in model 3.1 is 

{ 2121222112111222,11 ,,,,,,,, }. This model is a simple model with both 

mediating effects (e.g., the effect of X2 on Y2 via Y1) and direct effects (e.g., the effect of 

Y1 on Y2). Also, it is a model that will perfectly fit the data. It is easy to change it from a 

just-identified model to an over-identified model (e.g., by removing the path from X2 to 

Y2 or any other path or paths, see Figure 3.2). 

 

Figure 3.2 Example path analysis model 2 

 

 Of course, in real practice the formation of a path model needs to be built on a 

reasonable theoretical basis. The regression method will evaluate a set of linear models to 

establish this path analysis. For the example showed in Figure 3.1, we see that the 

following linear equations are examined: 

12121111 eXXY  

and      ,21212221212 eYXXY  

For the over-identified model shown in Figure 3.2, the linear equations are 

,12121111 eXXY  

and      21211212 eYXY . 

Though Pedhazur (1982, 1997) showed how to formulate path analysis models as 

linear regression models, confidence intervals for the parameter estimates are not easily 

computed. Becker (1992) proposed a method that gives a large sample estimate of the 

variance-covariance matrix of the parameter estimates. The method uses the multivariate 

delta method to obtain the asymptotic distribution of the standardized regression 
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coefficients. Thus, the confidence intervals and the statistical significance of the 

standardized regression coefficients can be obtained. Below is a brief summary of this 

method. (See these derivations in Becker, 1992, p. 358.) 

Let X0, X1,…, Xp be random variables with a multivariate normal distribution and 

population correlation matrix P. Partition P as 

1101

10

PP

P1
P , 

so that the correlations of the predictors with the outcome or dependent variable are 

contained in P01, and the correlations among the predictors are in P11. Then the 

population standardized regression coefficients )',...,( 1 pβ of the regression of X0 on 

X1,…, Xp can be expressed as 01

1

11 PPβ . Suppose R is the sample estimate of P and is 

partitioned as 

R =  
1101

10

RR

R1
 , 

then b = ),...,( 1 pbb is the sample estimate of β and is given by 

01

1

11 RRb . 

The above expression is similar to the formula for standardized regression coefficients 

such as that given in Cooley and Lohnes (1971). 

Let r. = ( )'.,...,.,.,...,.,. )1(1200201 ppp rrrrr  and 

)',...,,,...,,( )1(1200201 pppρ denote the vector of 2/)1( pp  nonredundant 

sample estimates and population correlations obtained by stringing out the lower triangle 

of the R and P matrices, respectively. 

Suppose R is a sample estimate of the correlation matrix P with an asymptotic 

distribution. As the sample size N , the distribution is given 

by ))( ,(~)( ρH0ρr. NN , where )H(ρ  is a function of ρ, the asymptotic normal 

distribution of the standardized regression coefficient estimate b is then given by 

))( ,(~)( ρȂ0βb NN , 

where the function )(ρȂ is the product of matrix A and )H(ρ , A = A(ρ ) = (
iaa ), 
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P

 

and ij are the elements of 1P  (see equation 19 in Becker, 1992, p. 358). Then the large 

sample multivariate normal approximation to the distribution of b is  

, , S(r.))N(β~b  

where S(r.) = A(r.)H(r.)A(r.)′/N = defined are  and  ;)( H(r.)A(r.)A(r.)'r.A(r.)V by 

replacing each population correlation in A and H by the corresponding sample 

correlation, and N/)( H(r.)r.V is the large sample covariance matrix of r.. Also the 

confidence intervals for the standardized regression coefficients can be obtained. A 

100(1- ) percent confidence interval for 
i
is given by 

,2/2/ iiiiiii szbszb   

where 
iis is the ith diagonal element of )S(r.  and z is the 100α percent critical value of 

the standard normal distribution. The corresponding test of statistical significance of 

i
uses the statistic  

iiii sbT / .  

It is possible to test if a specified path model is consistent with the pattern of the 

inter-correlations among the variables. Below I will introduce briefly the overall model 

test for a path analysis model using regression analysis. 

 Generally, tests of over-identified models are performed by using properties of 

the observed and the reproduced correlation matrices among the variables under 

consideration. (In meta-analytic path modeling, the pooled correlation matrix from the 

meta-analysis is treated as the observed matrix).Essentially, determinants of these 

matrices are used to calculate a chi-square statistic with degrees of freedom equal to the 

number of over-identifying constraints. 

In order to test an over-identified model, the first step is to calculate 2

GR , which is 

defined as a generalized squared multiple correlation. Specht (1975) showed that for a 

fully recursive model: )1)...(1)(1(1 22

2

2

1

2

cG RRRR , where 2

iR is the ordinary square 

multiple correlation coefficient of the ith equation in a fully recursive system, i = 1, 
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2,…,c. For an over-identified model (e.g., the model in Figure 3.2), one can calculate a 

statistic similar to 2

GR : 

)1)...(1)(1(1 22

2

2

1

2

crrrM RRRR  

Here 2

MR is calculated in the same manner as 2

GR , except that the sRir

2  are based on the 

restricted or constrained models in which some of the paths are missing comparing to the 

fully recursive model, here ir = 1r,…cr, for the number of equations in the restricted 

model („r‟ means „restricted‟ here in the subnotations). Therefore, 2

MR  can take values 

between zero and 2

GR . A measure of goodness of fit for an over-identified model is 

2

2

1

1

M

G

R

R
, and for large samples, this measure can be tested for significance as  

)
1

1
ln()(

2

2

M

G

R

R
dNW ,  

where N is the sample size and d is the number of constraints. The statistic W has an 

approximate 2 distribution with df = d (Pedhazur, 1982, p. 619). The model is rejected if 

the 2 test is significant at the selected significance level, suggesting that the model does 

not fit the data adequately. 

When different models are of concern, and the models are nested, tests can also be 

employed to see which model fits the data better (Specht, 1975, p. 125). The two models 

are fitted to the data and a chi-square test statistic is computed based on the two models‟ 

generalized multiple correlations. If the test is significant, the model with the larger 

number of parameters will be preferred to the one with the smaller number of parameters 

at the selected significance level. 

 

Structural Equation Modeling Method 

 

Path analysis is generally treated as a special case of SEM in which only a 

structural model is considered. That is, a single indicator is used for each variable studied 

and the causal relationships among them are modeled. Structural equation modeling seeks 

to describe the means, variances, and covariances of a set of variables in terms of a 
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smaller number of “structural parameters” (Kaplan, 2000, p. 13). Equation 3.1 described 

the structural form of the structural equation model. It can be rewritten as 

y = (I - B)
-1Гx + (I - B)

-1ζ , 

where I is an identity matrix here, and B, Г, ζ are the same as described in equation 3.1. 

Let E(x) = µx be the vector of means for x, cov(x) = E(x’x) = Φ, and E(ζ) = 0. Then, 

          E(y) = (I - B)
-1

E(x) = (I - B)
-1

 µx, 

          E(y, x) = Σ = 
)()(

)'()(

xx'yx'

yxyy'

EE

EE
 

                               = 
ΦB)(IΦΓ

ΓΦB)(IB)'ψΨ(IΓ(ΓB)(I
1

11

'

 ' 1

                       (3.2) 

Equation 3.2 tells us that the mean vector and covariance matrix can be represented by 

the parameters of the model. 

To estimate the model parameters, several estimation methods can be applied. 

Among them, the most often used is the Maximum Likelihood (ML) method. It is the 

default estimation method of some major SEM program (like LISREL, by Jöreskög and 

Sorbom, 2000; and Mplus, by Muthén and Muthén, 1998, etc.). Generalized Least 

Squares (GLS) is another popularly used estimation method. Both of these methods 

assume that the data are a realization of a multivariate normal distribution and both are 

scale free and scale invariant (Kline, 2005). 

 Let Xs be a 1p random vector and μ s be its mean vector and 
sΣ be its 

pp population covariance matrix. The population covariance matrix 
sΣ is the function 

of the unknown model parameters ȍ , which has dimension 1q , where p is the total 

number of observed variables (in path analysis, the p variables include both endogenous 

and exogenous variables), and q is the number of free parameters. We assume 

that
sΣ =

sΣ ( ȍ ), where 
sΣ ( ȍ ) can be a path analysis model, a CFA model or a full 

SEM model (e.g., Bollen, 1989). To obtain an estimate of the parameter ȍ , which is 

denoted as ȍ̂  here, we generally minimize a discrepancy function )ˆ( sF ΣS, , where S is 

the sample covariance matrix, and )ȍ(ΣΣ ˆˆ
ss is the implied covariance matrix which is 

based on the estimates of the model. This discrepancy function is a scalar and it measures 
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the distance between the sample covariance matrix S and the implied covariance s
ˆ . 

Generally, the following function is used to obtain the estimated parameters: 

))ˆ(())ˆ(()ˆ( 1' ȍσsWȍσsΣS, sF ,                                                  (3.3) 

where s and )(ȍσ are vectors of dimension 1*p  and p* = p(p+1)/2. They are obtained 

by stringing out the elements in the lower triangles of the sample covariance S and 

implied covariance matrix sΣ̂ . W
-1

 is a weight matrix of dimensions ** pp , and it is 

typically considered to be fixed, possibly estimated from the sample and a positive 

definite matrix (Browne, 1984).The minimum of the discrepancy function follows a chi-

square distribution in large samples with appropriate selection of W
-1

(Cheung, 2002, p. 

37). Cheung and Chan (2005) defined the weight matrix as the asymptotic covariance 

matrix of the pooled correlation coefficients estimated from their stage 1 analysis (see p. 

46 for the specific discrepancy function used). They proposed to use the ADF estimation 

method for parameter estimation in the second stage.  

With different choice of the weight matrix, several discrepancy functions are 

defined. One is the general least squares (GLS) estimation method, with which one 

chooses
11 SW  .Thus the fit function in Equation 3.3 can be simplified as 

2121 )]ˆ([
2

1
))]ˆ(([

2

1 ȍΣSIȍΣSS trtrF sGLS , 

where tr(.) is the trace of the matrix, which is the sum of the diagonal elements in the 

matrix.  

When one chooses 11 )(ˆ ȍΣW , another discrepancy function based on 

Maximum Likelihood estimation is obtained as 

,||log)]ˆ([|)ˆ(|log ptrF ssML SȍSΣȍΣ 1
 

where S is the sample covariance matrix, p is the total number of observed variables, and 

|.| denotes the determinant of a matrix.  

When the assumption of multivariate normality is tenable, the GLS and the ML fit 

functions have identical asymptotical properties. That is, they are asymptotically 

equivalent and also asymptotically efficient (Browne, 1974). As noted by Kaplan (2000, 
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p. 30), both GLS and ML functions are scale invariant and scale free under general 

conditions. 

Becker and Olkin (2009, manuscript) also proved that a maximum likelihood 

estimator of the pooled correlation matrix, which is based on the asymptotic joint 

distribution of the correlations, is equal to the general least squares solution. Thus, at 

stage 1 of MASEM, the estimates of the pooled correlation matrix from both Becker‟s 

(1992) method and Cheung and Chan‟s (2005) should presumably lead to equivalent 

results. To estimate the model parameters in the modeling step (step 2 of TSSEM), 

Cheung and Chan (2005) used ADF as the estimation method, and it is expected that the 

standard errors of this method may differ from those based on the GLS method and the 

ML estimation method. To compare the performance of these multivariate methods, 

simulation studies are conducted. The design and results of the simulation studies are 

introduced in the next chapter. 
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CHAPTER IV 

 

SIMULATION STUDY 

 

To compare the empirical performance of the multivariate methods for MASEM, 

in this chapter I describe a Monte Carlo study to examine the alternative methods.  

Specifically, at the first step, the original GLS method (Becker, 1992), the modified GLS 

method (Becker & Fahrbach, 1994; Hafdahl, 2007), and the TSSEM method (Cheung & 

Chan, 2005) were applied for synthesizing the correlation matrices. At the second step, 

the resulting pooled correlation matrices were then subject to the second stage analysis of 

the TSSEM approach (i.e., path analysis using SEM software LISREL with ADF as the 

estimation method, proposed by Cheung, 2002), and also path modeling using Becker‟s 

(1992) direct computation method. In the first simulation study, homogeneous correlation 

matrices were generated based on a fixed-effects model. Then the first and second steps 

of the MASEM were analyzed by the three methods mentioned above. In the step one 

analyses, Type I error rates were examined for each approach. At the second step, 

parameter estimates and the standard errors of the parameter estimates were all examined 

for each method. The second simulation study applied a random-effects model to 

generate sample correlation matrices. Specifically, one element in the population 

correlation matrix was assumed random, thus the sample correlation matrices were 

generated from the „random‟ parameters. In other words, the population correlation 

matrices for generating the sample correlations were assumed random samples from a 

„super/hyper‟ population correlation matrix. Since both fixed-effects data and random-

effects data were generated, in the first step of synthesizing correlation matrices, it was 

possible to cross the fixed-effects versus random-effects data and analyses. In this 

project, I examined three of the four combinations. Specifically, the analyses were fixed-

effects analysis of fixed-effects data, fixed-effects analysis of random-effects data, and 

random-effects analysis of random-effects data. Since the TSSEM approach handles only 

fixed-effects analysis, the random-effects analysis of random-effects data was only 
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conducted with the two GLS approaches. At the second step, parameter estimates and the 

standard errors of the parameter estimates were also investigated. 

 

Simulation Conditions 

 

Study 1: Fixed-effects Data 

 

First, a fixed-effects model was applied in generating the sample correlation 

matrices. That is, I assumed that the sample correlation matrices were homogeneous and 

arose from one common population correlation matrix. The TSSEM and the GLS 

methods were respectively used for synthesizing the correlation matrices. With the 

TSSEM method, Maximum Likelihood Estimation (MLE) was used in the first step for 

parameter estimation and model evaluation as described in Cheung and Chan (2005). 

With the GLS methods, the multivariate Q test in Equation 2.3 was used to test the 

homogeneity of the correlation matrices. In addition to investigating the original GLS 

method, one modification of the GLS method was also applied: instead of using the 

sample correlations, to compute the asymptotic variance-covariance matrix, the sample 

size weighted correlation coefficients were used in place of the population correlation 

coefficients (e.g., Becker & Fahrbach, 1994; Hafdahl, 2007). In synthesizing the 

correlation matrices at the first stage, all three approaches, namely, the TSSEM approach, 

the original GLS approach (GLSr), and the modified GLS approach (GLSm), were 

examined. At the second stage, two procedures were applied for the path analysis: 1) the 

TSSEM stage 2 analyses for path modeling; 2) GLS direct computation approach for both 

GLSr and GLSm at the first step. The parameter estimates and the standard errors of the 

parameter estimates were compared. 

 

Data Generation 

 

SAS/IML (SAS Institute, 1995) was used to generate correlation matrices 

following the data structure in Figure 3.1. LISREL 8.8 (LISREL, Jöreskög and Sorbom, 

2000) was used for stage 1 and stage 2 analyses of the TSSEM approach and path 
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modeling with the Maximum Likelihood (ML) estimation method. Cheung (2007) 

developed a LISREL syntax generator for the two-stage analysis of MASEM and it was 

used in the simulation studies for getting the TSSEM results. Specifically, SAS was used 

as the program to call and run the TSSEM programs in the simulations (using method 

introduced in Gagne & Furlow, 2009). SAS/IML (SAS Institute, 1995) was used for the 

GLS methods of synthesizing correlation matrices and for direct computation of the path 

coefficients and standard errors. For comparison purposes, I used the same path models 

and simulation conditions as those chosen by Cheung (2002) for the fixed-effects-model 

data.  

 

Population correlation matrix (ρ) 

A correlation matrix for p = 4 variables, with p* = p(p-1)/2 = 6 correlation 

coefficients was created for each study with the population correlation matrix defined as 

 

                                 Y1      Y2     X1    X2 

 ρ

120.35.58.

155.50.

165.

1

2

1

2

1

X

X

Y

Y

.                                                                           (4.1) 

In the first simulation study where the correlation matrices were homogeneous, 

this population correlation matrix served as the common population correlation matrix. It 

was built to produce the example path model shown in Figure 4.1. The population 

matrices presented in the example were defined as follows (also see Cheung, 2002, p. 71) 

 

.510

0.51
 and ,

0.5

00
 ,

03.

.5.4
 ,

0.12.

2.0.1
ΨBΓΦ ,  

where ΨB,Γ,Φ,    corresponded to the matrices defined in Equation 3.1. Specifically, Φ  

was the factor covariance matrix of the two independent variables; Γ was the matrix 

containing the path coefficients from the independent variables (X1 and X2) to the 

dependent variables (Y1 and Y2); B was the matrix containing the path coefficients from 

the dependent variable Y1 to the dependent variable Y2, and Ψ was the measurement error 
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matrix, respectively. Since there was no direct path from X2 to Y2, this model was an 

over-identified model with df = 1.  

The path model with the population values is shown in Figure 4.1. 

 

 

 

Figure 4.1 Example path analysis model 2 with the population values defined 

 

First, to create correlation matrices based on a fixed-effects model, the population 

correlation matrix ρ was used. Multivariate normal distributed data were generated based 

on the population correlation coefficients in ρ . SAS/IML functions RANNOR and ROOT 

(Cholesky decomposition) were used in generating the observed correlation matrix from 

each of the simulated primary studies, that is, after the observations were generated from 

a four-variate normal distribution withρ being the specified population correlation matrix. 

Pearson correlation coefficients in ri were computed from these observations to yield the 

fixed-effects data. The correlation coefficients computed from the raw data were then 

used for the subsequent analyses.  

The simulation conditions considered were as described next (also see these 

simulation conditions in Cheung & Chan, 2005). 

 

Number of studies (k)  

 Three values were chosen for the number of studies k: 5, 10, and 15. 

Cheung and Chan (2005, p. 49) noted that although the number of studies in real 

MASEM papers may be more than the number of studies listed above, the complexity of 
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the cross-grouop constrains in the Stage 1 of TSSEM as well as the inversion of the 

weight matrix with the ADF estimation at the Stage 2 analysis , computational challenges 

will arise in a simulation study with too many sample studies. Thus, Cheung (2002) and 

Cheung and Chan (2005) chose these numbers of studies to balance between the 

computation time and the generalizability of the simulation studies.  

 

Sample sizes within each study (n)  

Five levels of sample size per study were considered: 50, 100, 200, 500, and 

1000. 

Here n = 50 was used as the condition for a small sample and n = 1000 as the large 

sample condition (Cheung & Chan, 2005, p. 49). 

Paxton, Curran, Bollen, Kirby, and Chen (2001) noted that 500 replications are 

usually large enough to give accurate statistical estimates in implementing Monte Carlo 

experiments in SEM. Thus, 500 replications were generated in these simulations. For 

simplicity, studies within each simulated meta-analysis had equal sample sizes and no 

missing correlations. 

The 1553nk  conditions are run for GLSr, GLSm and TSSEM methods 

of synthesizing r matrices and the resulting pooled correlation matrices were subject to 

path analysis using the model in Figure 4.1. 

 

Study 2: Random-effects Data 

 

Second, I used a random-effects model to generate the sample correlation 

matrices. That is, I assumed that the correlation matrices were from an average 

population correlation matrix rather than a single population matrix. To create correlation 

matrices based on a random-effects model, the population correlation matrix ρ  as 

displayed in Equation 4.1 was treated as an „average‟ population correlation matrix. One 

element in the correlation matrix ρ was generated as random. In this study, the 

correlation between X1 and Y2 was treated as random with mean 0.55 and standard 

deviation of 0.1. The 0.1 standard deviation is equivalent to a 0.01 variance of this 

correlation coefficient. Practically, this seems a small variance component and may be 
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prone to computational boundary conditions. However, bigger variances will result in 

inadmissible values of correlation coefficients, for example, values that exceed 1. The 

SAS/IML functions RANNOR and ROOT (Cholesky decomposition) were used in 

generating the observed correlation matrix from each of the simulated primary studies. In 

each replication, the observations were generated from a four-variate normal distribution 

withρ being the specified „average‟ population correlation matrix, that is, the population 

correlation matrix used to generate the sample observations was assumed to be a random 

sample from the population correlation matrix with the specified mean and variance. At 

the path modeling step, the pooled correlation matrix was used as input to fit the path 

model in Figure 4.1 using TSSEM, GLSr and GLSm methods. The estimates of the path 

coefficients and standard errors were examined to understand how the first-step model 

changes affected the path-model parameter estimates at the second stage. 

In the second study, first the fixed-effects analyses for synthesizing correlation 

matrices were run on the random-effects data. Specifically, the error variance considered 

in synthesizing the sample correlations was only the sampling error. As in the fixed-

effects analyses of fixed-effects data situation, altogether 1553nk  conditions 

were run for each of the methods (TSSEM, GLSr and GLSm). Second, random-effects 

analyses were conducted on the random-effects data, where the between-studies variance 

was estimated and added to the sampling variance component. Then the estimates of the 

pooled correlation coefficients were obtained. Remember that the TSSEM approach 

would only be able to deal with fixied-effects analyses, thus the random-effects analyses 

of random-effects data were conducted only for the GLS methods. Also 1553nk  

conditions were run for each of the GLS methods (GLSr and GLSm) in both steps. 

 

Criteria for Parameter Estimates 

Relative Percentage Bias: 

The first criterion was the relative percentage bias of each parameter estimate and 

it was defined as 

%100
ˆ

)ˆ(B , 
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where was the population parameter, ˆ was the average of the estimates of the 

parameters across all replications. Less than 5% bias was treated as acceptable and less 

than 2% bias was treated as good (Hoogland & Boomsma, 1998). 

 

Relative Percentage Bias of the Standard Error of the Parameter Estimate 

 This measure of bias was defined as 

%,100
)ˆ(

)ˆ()ˆ(
))ˆ((

SD

SDES
ESB  

where )ˆ(ES was the mean of the estimated standard errors, and )ˆ(SD was the 

empirical standard deviation of the parameter estimates across the replications. Less than 

10% bias was treated as acceptable and less than 5% was treated as good (Hoogland & 

Boomsma, 1998). This index will show the closeness of the mean standard errors to the 

standard deviations of the parameter estimates.  

 

Standard Error of the Parameter Estimate: 

This index was defined as the mean value of the standard errors of the parameter 

estimates. It measures the precision of the parameter estimates. When the sample size 

increases, the standard errors of the parameter estimates should go down significantly. 

 

Confidence Interval of the Rejection Rates 

The confidence interval for the rejection rate with 500 replications can be 

approximated by the normal distribution. The 95% acceptance region for 05. in the 

percentage metric was 100500/)95.0()05.0(96.10.5 [3.09, 6.91]. 

 

Results of the Simulation Studies 

 

Study 1: The Homogeneity Tests of the Correlation Matrices 

 

Rejection Rates of Each Method 
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At the first stage of the TSSEM and GLS approaches, the homogeneity of the 

correlation matrices was tested. The GLS approaches used a multivariate Q test and the 

TSSEM approach used the chi-square test built into the SEM software program with 

Multivariate Likelihood Estimation. The observed rejection rate of each approach at the 

first stage is shown in Table 4.1, with the expected rejection rate being 5% ( = 0.05). 

Table 4.1 shows that the original GLS method (GLSr) rejected the true model 

frequently when the sample sizes were small to medium (n < 200). The GLSm approach 

seemed to perform the best among the three methods, with rejection rates within the 

acceptable range for almost all conditions except the conditions k = 10, n = 50 and k = 15, 

n = 200. The TSSEM method controlled the Type I error rate pretty well at the larger 

sample sizes, but showed over-rejection at the smaller sample sizes. For example, for k = 

5 and k = 10, the rejection rates for TSSEM and GLSr were all above 5% and out of the 

acceptable range when 100n .  

 

Chi-square Test Statistics 

Table 4.2 shows the means and standard deviations of the chi-square test statistics 

from each approach and all conditions. For the GLS approaches, the chi-square test 

statistics were the multivariate Q statistics calculated using Equation 2.7. For the TSSEM 

approach, the chi-square test statistics were the model fit test statistics using the 

maximum likelihood estimation at stage 1. For all three methods, the degrees of freedom 

of the test statistics were equal to *)1( pk . Since I modeled no missing variables in each 

simulated condition, the expected degree of freedoms calculated were:  k = 5, df = 6(5-1) 

= 24; k = 10, df = 6(10-1) = 54; and k = 15, df = 6(15-1) = 84. As we know, the 

theoretical mean of the chi-square statistic equals its degrees of freedom. The expected 

standard deviation of the chi-square test statistic equals df2 (cf. Freund, 1992). Thus, 

the expected standard deviations are: k = 5, SD = 6.93; k = 10, SD = 10.39; k = 15, SD = 

12.96.  

Figure 4.2 shows the means of the test statistics for each method. The test 

statistics for the GLSr method were generally positively biased. The bias was significant 

when the sample size per study was small (n = 50). When the sample sizes increased, the 

bias of the GLSr method decreased notably. The GLSm method performed much better 
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than the original GLS method, with the bias of the test statistics being minimal at all 

conditions. The TSSEM also performed well in all conditions except when k = 15 and n = 

1000, where the test statistics tended to deviate from the expected means and the standard 

deviations exceeded the theoretical values. This is consistent with the idea of a long tail 

in the graph (see p. 24). Overall, the test statistics and the standard deviations of both the 

GLSm and TSSEM approaches converged to the theoretical means when the sample size 

increased, with GLSm being the most consistent among all three methods. 

 

Study 1: Parameter Estimates and Standard Errors  

 

At the second step, the pooled correlation matrices were subjected to path 

modeling using the example shown in Figure 4.1. The GLS direct computation methods 

produced only the estimates of the path coefficients and their standard errors. The 

TSSEM methods gave parameter estimates and standard errors as well as the overall 

model fit indices. Only parameter estimates and their standard errors were compared 

here. 

 

Relative Percentage Bias of the Path Coefficients 

The relative percentage bias values for the model parameter estimates were 

summarized for each of the four path coefficients ( 21 , 21 , 11 , 12 ). Results showed that 

both the TSSEM method and the modified GLS method (i.e., the one with modified 

estimator of the asymptotic covariance matrix) yielded unbiased estimates of the path 

coefficients. Using 5% as an acceptable percentage for the relative bias (Hoogland & 

Boomsma, 1998), the path coefficients from these two methods were all unbiased, with 

relative percentages being within 2%. Table 4.3 shows the relative percentage bias of the 

parameter estimates obtained by different methods. The path coefficient estimates of the 

original GLS method were biased when the sample sizes were small (n 100). For 

example, when n = 50, the bias was 5.39% for 11
ˆ  in the 10-studies condition. The 

relative percentage bias for 21
ˆ  was 6.68% and for 11

ˆ  6.34% in the 15-studies condition. 

This may because of the poor estimate of the asymptotic covariance matrix of correlation 

coefficients under small sample sizes (Becker & Wu, manuscript). When the sample size 
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increased, the path coefficients estimates computed with the original GLS method 

became less biased. Of all the three methods, the TSSEM approach resulted in the least 

relative bias, with all biases within 2%. In summary, both the TSSEM method and the 

modified GLS method estimated the path coefficients accurately, while the original GLS 

method gave less biased estimates of the path coefficients only when the sample size was 

larger than 100.  

 

Relative Percentage Bias of the Standard Errors of the Path Coefficients 

Table 4.4 summarizes the relative percentage bias of the standard errors of the 

path coefficient estimates from each method. Using 10% as an acceptable percentage for 

the standard error bias, the standard errors for path coefficient estimates from the TSSEM 

method were all biased for almost all conditions, with the highest percentages being 

around 30% and above.  All the biases were positive, which means the standard errors 

were generally overestimated with the TSSEM method. This will affect confidence 

intervals and hypothesis tests of the path coefficients. In particular, the confidence 

intervals constructed using the TSSEM estimates will be wider than their true values, and 

hypothesis testing of the path coefficients may lead to more rejection decisions. On the 

other hand, GLS methods showed much lower relative percentage bias of the standard- 

error estimates. For the original GLS method, the relative percentage bias was generally 

higher than 10% when the sample size was small (n = 50). However, when sample size 

increased, the bias of the standard-error estimates decreased noticeably. When sample 

sizes were larger than 200, the standard-error estimates of the original GLS method had 

acceptable bias. The modified GLS method gave unbiased estimates of the standard 

errors for almost all conditions.  

 

Standard errors of the path coefficients 

The standard errors of the parameter estimates from each method under the fixed-

effects data were plotted in Figure 4.10. The standard error reflects the precision of the 

estimation of the parameters. Figure 4.10 shows that, for each path coefficient, the 

standard error estimates from the GLSm method and GLSr method were very close to 

each other. For path coefficients 21 and 21 , the standard errors of the TSSEM estimates 
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were higher than those based on GLSr and GLSm methods. For path coefficients 11  

and 12 , the three methods showed comparable mean standard errors for all conditions. 

For all methods, when the sample size increased, the standard error decreased. The values 

of the standard error estimates were very small, ranging from .009 to .066 for the 5-

studies conditions, from .007 to .046 for the 10-studies conditions, and from .005 to .024 

for the 15-studies conditions across the three methods. Lower values of standard-error 

estimates are associated with more precision. The results also indicated that the 

differences between the standard errors of all the methods were actually small.  

Study 2: Homogeneity Test of Correlation Matrices --- Fixed-effects Analyses 

In study 2, random-effects model data were generated. First, fixed-effects 

analyses were conducted on these random-effects data using each of the three methods. In 

real-world analyses, fixed-effects analyses were preferred and applied when researchers 

decide that they want to generalize the results to the population in hand (Hedges & 

Vevea, 1998). On the other hand, it is not uncommon that fixed-effects analyses may be 

applied to random-effects data, especially in initial assessment of the nature of the data. 

This simulation study mimicked this practice. 

For the GLS methods, multivariate Q tests were examined. For the TSSEM 

method, the first stage model chi-square test statistic was examined. As aforementioned, 

one element in the „super/hyper‟ population correlation matrices was assumed random, 

and its standard deviation was .1, which means that the variance for that element was .01. 

Consequently, the between-study variance may be very small and applying a fixed-effects 

analysis on these random-effects data may still be reasonable. 

 

Study 2: Parameter Estimates and Standard Errors --- Fixed-effects Analyses 

 

In the second study, fixed-effects analyses were conducted on the random-effects 

data. Parameter estimates from each method were summarized and compared. 

Specifically, for the path model shown in Figure 4.1, the four path coefficients and their 

standard errors were examined.  

 

Rejection Rates of Each Method 
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Table 4.5 shows the rejection rates for each method at the .05 significance level. 

The results shown here were consistent with those in Table 4.1. For the GLSr approach, 

the rejection rates were big when sample sizes were medium to small (n )200 . The 

highest rejection rates were 23% (k = 10, n = 50) and 26.8% (k = 15, n = 50). The 

rejection rates dropped rapidly when the within-study sample size n reached 200 and then 

got closer to the nominal percentage at larger sample sizes (n = 500 and n = 1000). The 

GLSm approach showed nominal rejection rates at almost all conditions, except when k = 

10, n = 50, and k = 15, n = 200. The TSSEM approach had over-rejections at smaller 

sample sizes as well. For example, when sample size was 50, the rejection rates for the 

TSSEM approach were 8.4%, 11.2% and 8.2% for k equals 5, 10 and 15, respectively. 

When n > 100, the rejection rates turned nominal quickly. Comparing the rejection rates 

of these three methods, the conclusion was that the GLSm approach seemed to control the 

error rates better than the other approaches. When the within-study sample size became 

large (n  200), all methods showed comparably values for the rejection rates. 

 

Chi-square Test Statistics 

The means and standard deviations of the chi-square test statistics are shown in 

Table 4.6. As described in the fixed-effects data situation, the expected degrees of 

freedom for the three k conditions were (k – 1)*p and they were calculated as 24, 54, and 

84, respectively. The expected standard deviations of these chi-square statistics were 

6.93, 10.39, and 12.96, respectively. We can see that the means and standard deviations 

of the chi-square statistics were very similar to those in Table 4.2, with only slight 

changes, mostly to the second decimal place of these values. The conclusion was that the 

chi-square statistics obtained from each of the GLSr, GLSm and TSSEM methods 

converged to their theoretical means when the within-study sample sizes increased, with 

the GLSm method being the most consistent among all three methods. 

 

Relative Percentage Bias of the Path Coefficients: 

The relative percentage biases for the model parameter estimates were calculated 

for each of the four path coefficients 21 , 21 , 11 , 12 . The resulting bias values for the 

estimates of the path coefficients appear in Table 4.7. As can be seen from the table, no 
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substantial bias was found in the estimation of the path coefficient 12  parameter across 

all three methods. The bias estimates for this parameter ranged from 0% to 3.93%, with 

all values being within the 5% criterion for acceptable bias (Hoogland & Boomsma, 

1998). When n = 50, the GLSr method gave biased estimates of the parameters 21  

(5.54% ~ 6.75%) and 11  (5.43% ~ 6.22%). However, when sample size increased, the 

bias estimates dropped significantly. It appeared that the smallest bias values were for the 

TSSEM and GLSm approaches, while the most biased estimates were from GLSr 

method, especially at the small sample sizes conditions (n )100 .The similar situation 

was found for the path coefficients 21 , 21 , and 11 , where both the TSSEM approach 

and the GLSm approach gave bias estimates within the acceptable range. Specifically, the 

TSSEM approach produced parameter estimates within 2% bias which was considered 

very good using the criteria proposed by Hoogland and Boomsma (1998). Except for the 

n = 50 sample-size condition, the most biased estimates among the four parameters were 

for 21  and 21 regardless of the approach used for estimation. Overall, the modified GLS 

approach (GLSm) and the TSSEM approach yielded unbiased estimates of the path 

coefficients across all simulation conditions and the parameter estimates from GLSr 

approach turned less biased when the sample sizes increased (n 100). 

 

Relative Percentage Bias of the Standard Errors of the Path Coefficients 

As stated previously, in creating the random population correlation matrix, the 

correlation between variables X1 and Y2 was treated as random with mean of .55 and 

standard deviation of .1. Direct decomposition of the correlation coefficients showed that 

the most affected path coefficients of this change would be 21  (the relationship between 

Y1 and Y2) and 21 (the relationship between X1 and X2) (see Appendix A). 

Table 4.8 displays the relative percentage bias of the standard errors. As can be 

seen in this table, the standard errors of parameters 21  and 21  were all underestimated 

and were well beyond the acceptable range of bias regardless of the method used, with 

the range of underestimation being from 22.89% to over 95.08%. The estimates of the 

standard errors of the other two parameters 11  and 12 were generally not biased with the 

modified GLS approach (GLSm), with all bias being within the acceptable 10% 
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(Hoogland & Boomsma, 1998). The same situation was found for the standard error 

estimates for 11
ˆ  and 12

ˆ  using the original GLS method, except for the condition with n 

= 50. With the TSSEM approach, the standard errors estimates of the parameters 11  and 

12  were almost all overestimated across all conditions. In summary, the standard errors 

were generally underestimated by the original GLSr method. The underestimation was 

huge when the sample sizes were small (n = 50) and decreased rapidly when the sample 

sizes increased. The GLSm approach produced unbiased estimates for the standard errors. 

The modified GLS approach usually had the smallest relative percentage bias in standard 

errors, and usually the bias decreased when the sample sizes increased. The relative 

biases of the TSSEM approach were also relatively large and beyond the acceptable 

range. The standard errors of the estimates of parameters 11  and 12  were overestimated 

by the TSSEM method. In other words, the confidence intervals constructed using the 

TSSEM estimates would be wider than the true values.  

 

Mean Standard Errors of the Path Coefficients 

The mean standard errors of the path coefficients estimates were summarized and 

plotted in Figure 4.17. As can be seen from this graph, the standard errors of the 

parameters were very small for each path coefficient, ranging from .011 to .066 for the 5-

studies conditions, from .007 to .047 for the 10-studies conditions and from .005 to .038 

for the 15-studies conditions across the three approaches. The lower values indicated 

higher precision. The standard error estimates based on the GLSr method and the GLSm 

method were essentially identical across the conditions. For the standard error estimates 

of the path coefficients 21  and 21 , the TSSEM estimates were larger than those based 

on GLSr and GLSm methods. For the standard errors of the path coefficients 11  and 12 , 

the three methods produced equivalent mean standard errors at all conditions. For all the 

methods, when the sample size increased, the standard error decreased. This graph also 

demonstrated that the standard-error estimates of all three approaches were very small 

and close to each other. 

 

Study 2: Parameter Estimates and Standard Errors --- Random-effects Analyses 
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As aforementioned, random-effects analyses of the random-effects data were only 

conducted for the two GLS approaches. Both the original GLS method and the modified 

GLS method produced parameter estimates within the acceptable range of relative 

percentage of bias. Figure 4.18 shows the relative percentage bias of the parameters for 

the GLSm approach. As can be seen from the graph, all the biases were within 5%, with 

the most biased parameter estimates among the four parameters being for the 

parameters 21  and 21 . The results were very similar to those in the fixed-effects 

analyses. 

Figure 4.19 shows the relative percentage bias of the standard errors of the 

parameters. With the random-effect analyses, both between-study variation and sampling 

variation were considered in estimating the parameters. It turned out that the standard 

errors of the parameter estimates were all exceeding the acceptable range, with the bias 

values for the standard-error estimates of the parameters 21  and 21  being the most 

extreme.  

The random-effects analyses of the random-effects data using the simulation 

conditions in this dissertation produced parameter estimates and standard error estimates 

similar to those in the fixed-effects analyses.  
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CHAPTER V 

 

REAL DATA APPLICATIONS 

 

As a part of my comparison of the multivariate methods for meta-analytic path 

modeling, one example was used to illustrate the application of these approaches to real 

data analysis. Data for this example came from a meta-analysis by Craft, Magyar, Becker 

and Feltz (2003). This meta-analysis study was conducted to disentangle the relationship 

between three components of anxiety and athletic performance. These three components 

were cognitive anxiety, somatic anxiety, and self-confidence (Martens, Vealey, & 

Burton, 1990a). These aspects of anxiety are often measured using the instrument 

Competitive State Anxiety Inventory (CSAI-2; Martens, Burton, Vealey, Bump, & 

Smith, 1990b). In this paper, the authors examined the interdependence of the three 

subscales and their relationship with athletes‟ performance, as well as the ability of the 

subscales of the CSAI-2 to predict athletic performance. Moderator analyses were also 

conducted to explore the possible effects of some study characteristics (type of sport, skill 

type, athlete‟s skill level, and time of CSAI-2 administration). The authors hypothesized 

that cognitive anxiety and performance would have a negative relationship; the 

relationship between performance and somatic anxiety would be very small and close to 

zero; performance and self-confidence would have a positive relationship; and that 

cognitive anxiety and somatic anxiety would have a positive relationship, but each would 

have a negative relationship with self-confidence (Craft et al., 2003, p. 50,).  

The paper included 29 studies of the relationship between state anxiety measured 

by the CSAI-2 and athletic performance, among which 69 independent samples were 

observed. Both published and unpublished documents were collected and included. The 

authors indicated that twenty studies were published and nine were unpublished. The 

correlations were calculated using the observed Pearson‟s r or they were transformed 

from Cohen‟s d (Hedges & Olkin, 1985). In the original study, Craft et al. (2003) applied 

the Fisher‟s Z transformation to the correlations. The transformed correlations were then 

weighted by the inverse of their variances. Multivariate analyses under a fixed-effects 
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model were also conducted using methods proposed by Becker (1992) and Becker and 

Schram (1994). Exploratory modeling was used to examine the interrelationships among 

the subscale variables and to explore the potential moderator effects of the relationship 

between anxiety and performance. Standardized regressions (path analyses) were 

examined to show the relationships between the independent and dependent variables 

while controlling the effects of the other variables in the model. The authors reported 

results for several subgroups, specifically, groups by sports type, type skills, level of 

athlete and the time of CSAI-2 administration. 

 

Method 

To illustrate how the multivariate MASEM methods are applied using real data 

and to compare their performance, I first synthesized the Craft et al. (2003) sample 

correlation matrices using the GLSr, GLSm, and the TSSEM stage 1 methods. 

Homogeneity tests were conducted to test if the sample correlation matrices were coming 

from the same population correlation matrix. At the second step, I applied the GLS direct 

computation method using the pooled correlation matrix to yield the estimates of the path 

coefficients and standard errors. The second stage of TSSEM was used as well for the 

analysis of the path models to estimate the path coefficients (standardized regression 

coefficients) and the standard errors. Moreover, in the stage 2 analysis of TSSEM, I 

applied maximum likelihood estimation (MLE) for the estimation of the parameters and 

standard errors to see how it compares with the ADF estimation method with the original 

TSSEM approach. The path-analysis model used here followed the theoretical structure 

in the original paper (Craft et al., 2003). The three subscales -- cognitive anxiety, somatic 

anxiety and self-confidence were assumed predictors of the athlete‟s performance. In 

path-analysis terminology, the athlete‟s performance was treated as the endogenous 

variable and the three anxiety subscales were treated as exogenous variables. Figure 5.1 

shows the path diagram for the example. Among the 69 independent sample correlation 

matrices, 20 complete correlation matrices were found and selected for the purpose of 

this dissertation. Since there were three subscales of the CSAI-2 instrument (independent 

variables) and one performance variable (dependent variable), altogether six distinct 

correlations were contained in each correlation matrix. Table 5.1 shows the sample size 
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of each sample and the complete correlation matrices used in this analysis. As can be 

seen that the smallest sample size was 14 and the largest sample size was 199 in this 

study. 

Results 

Homogeneity Test of the Correlation Matrices 

At the first stage of synthesizing the correlation matrices, the GLS methods used 

the Q statistic for testing the hypotheses. The multivariate QE test was used to test the 

hypothesis that all of the variation in the observed correlation coefficients was due to 

random sampling variation. It is a chi-square test statistic with degrees of freedom equal 

to )1(* pk , where k is the number of studies (and k equals 20 in this example), and p = 

4 is the number of variables. With the TSSEM approach, maximum likelihood estimation 

was used in the first stage and the chi-square test statistic was used as a model test to see 

if the correlation matrices are homogeneous or not. 

For the modified GLS approach, QGLSm was 866.8, df = 114, p < .001. For the 

original GLS method, QGLSr = 497.8, df = 114, p < .001, whereas the chi-square test 

statistic of the TSSEM approach was 403.74, df = 114, p < .01. These results all showed 

that the correlation matrices were not homogeneous and the null hypothesis was rejected. 

The results suggested that the fixed-effects model may not be appropriate for pooling the 

correlation matrices. However, in real-world analyses, researchers do not always make 

the decision to use fixed-effects or random-effects analyses based solely on the 

homogeneity test. For example, fixed-effects analyses may still be applied to the data if 

the researcher only wanted to generalize the results to the populations in the studies at 

hand. In this project, multivariate fixed-effects analyses were first applied to estimate the 

synthesized correlation matrix, and then were used to get the second-step parameter 

estimates and standard errors. 

 

The Pooled Correlation Matrix and the Fitted Model 

Table 5.2 summarizes the pooled correlation matrices estimated from each of the 

approaches. As can be seen from the table, the pooled correlation matrices from the GLSr 

GLSm and TSSEM methods were very close in magnitude to each other.  
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 The parameter estimates and their standard errors from each of the approaches 

were shown in Table 5.3. The estimates showed that the strongest relationship existed 

between the subscales self-confidence and performance. The estimated path coefficients 

from TSSEM and GLSm were .408 and .516, respectively, whereas the standard error 

estimates were .033 and .028 for each of these approaches. The relationship was positive 

and significant, which means that more self-confidence in athletes leads to better 

performance. The weakest relationship was between the subscales somatic anxiety and 

performance, where the path coefficients estimates were -.019 by TSSEM and .069 by 

GLSm. The standard errors for this path coefficient were .033 by TSSEM and .031 by 

GLSm. We can see that estimates of parameter using these two methods were in opposite 

directions. Also, with the TSSEM approach, the test for this path coefficient was not 

significant (z = -.572, p>.05), however, the path coefficient was statistically significant 

with the GLSm approach (z = 2.21, p<.05). For cognitive anxiety and performance, 11
ˆ  = 

.108, SE11 = .031 by the TSSEM approach and the z-test statistic was 3.47, with p < .05; 

the estimate of this path coefficient by the GLSm method had magnitude of .180, with 

standard error of .030. The z-test statistic was 6.04 and p < .05. In summary, both GLS 

and TSSEM showed cognitive anxiety was a significant predictor of athletes‟ 

performance, with the estimates from the GLSm method demonstrating slightly stronger 

relationships than estimates from the TSSEM approach. The parameter estimates and 

standard-error estimates from the GLSr method were also presented in Table 5.3. It 

turned out that this approach produced the strongest relationships between the predictors 

and the outcome, with all path coefficients being statistically significant using this 

approach. 

At the second step of TSSEM, the maximum likelihood estimation was also 

applied instead of the ADF estimation in the original TSSEM method. It turned out that 

the parameter estimates were exactly the same as the ones estimated using ADF 

estimation, only with a slight difference in the estimates of the standard errors of the path 

coefficients. As noted in the methods section, the TSSEM approach uses the total sample 

size to fit SEM models in the second step. In this example, the total sample size was 

1250, which was considered big enough for both ML and ADF estimation methods to 

perform well and produce equivalent parameter estimates.  
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In summary, the real example shows that overall the modified GLS method and 

the TSSEM method produced similar results in terms of both parameter estimates and 

standard errors estimates. The original GLS method produces parameter estimates 

slightly different from the other two approaches, resulting estimates showing stronger 

relationships among the variables. There were some differences in the parameter 

estimates and statistical tests which would lead to different conclusions about the overall 

relationships among the observed variables. Using maximum likelihood estimation at the 

second step of the TSSEM approach seemed to produce estimates very similar to those 

produced by the ADF estimation method. This particular real-data example mimicked the 

larger sample size and larger number of studies condition in the simulation study, with 

the within-study sample sizes being vary across studies. More empirical studies should be 

conducted to examine the generalizability of the simulation results to real data analyses. 
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CHAPTER VI 

 

DISCUSSION 

 

The purpose of this dissertation was to compare the multivariate methods for 

synthesizing correlation matrices and also different approaches for estimating path- 

analysis models using the synthesized correlation matrix. Specifically, the GLS 

approaches (Becker, 1992; Becker & Schram, 1994) and the TSSEM approach (Cheung, 

2002; Cheung & Chan, 2005) were examined using both simulation studies and empirical 

research. The original GLS approach (Becker, 1992) is a multivariate approach of 

synthesizing correlation matrices, which consideres the dependence of the correlation 

coefficients by using the asymptotic covariance matrix of the correlation coefficients 

obtained by Olkin and Siotani (1976). Several researchers have conducted studies 

examining the statistical properties of this approach and the asymptotic correlation matrix 

used (e.g., Becker & Fahrbach, 1994; S. F. Cheung, 2000; Cheung & Chan, 2005; Furlow 

& Beretvas, 2005). These researchers all noted the poor performance of the asymptotic 

covariance matrix when the within-study sample sizes were small. In particular, Becker 

and Fahrbach (1994), S. F. Cheung (2000) and Furlow and Beretvas (2005) proposed 

some forms of modified estimators for the covariance matrix of the correlation 

coefficients. One of the modifications was to use the mean correlations in place of the 

observed individual correlation coefficients in the covariance matrix. This modification 

was applied in this dissertation and the modified GLS approach was examined along with 

the original GLS and TSSEM approaches.  

 

Conclusions and Suggestions 

 

Results showed that the modified GLS approach performed much better than the 

original GLS approach not only in synthesizing the correlation matrices, but also in the 

estimation of the path coefficients and the standard errors of the path coefficients in the 



 56 

second step of MASEM. Use of the modified GLS procedure avoided the problems found 

with the original GLS in the stage-one analysis, such as over-rejection of the true model 

in the hypothesis test of homogeneity in the first step of synthesizing correlation matrices. 

The modified GLS approach also produced less biased estimates of the parameters and 

their standard errors than the original GLS method. Compared to the TSSEM approach, 

the modified GLS procedure controlled the Type I error rates more consistently across all 

the simulation conditions. The chi-square test statistics from each of the three approaches 

converged to their theoretical means when sample sizes increased, with the modified 

GLS approach again being the most consistent compared to either the original GLS 

method or the TSSEM method. 

The GLS direct computation procedures used in the second step provided 

parameter estimates and standard-error estimates equivalent with those from the SEM 

software and the TSSEM approach. In the second step of path analyses, both TSSEM and 

the modified GLS approach produced unbiased estimates of the path-coefficient 

parameters. The standard-error estimates from the modified GLS approach were the 

smallest among all three approaches, which means that this approach gives the most 

precise estimates of the parameters. However, the differences among the standard-error 

estimates of these methods were minimal, indicating that all three approaches estimated 

the standard errors accurately. 

The performance of the three methods seemed to be similar for both fixed-effects 

data and random-effects data in this dissertation. Specifically, the fixed-effects analyses-

of both the fixed-effects data and the random-effects data gave quite similar results in 

terms of the parameter estimates and the standard error estimates of the parameters for 

each of these approaches. However, because only one correlation coefficient was treated 

as random in generating the random-effects data, cautions should be given to the 

generalization of the results beyond this study.  

Based on the simulation-study results and the real example shown in this 

dissertation, suggestions may be warranted for applied researchers conducting meta-

analytic path-modeling analysis. First, the empirical performance of the multivariate 

methods discussed in this dissertation showed that both the modified GLS approach and 

the TSSEM approach were good at controlling the Type I error rate of the homogeneity 
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test when the within-study sample sizes were larger than 50. Either of them could be used 

in synthesizing correlation matrices. However, the original GLS method was not 

recommended when the within-study sample sizes were small to medium (less than 200), 

with which the rejection rate of the homogeneity test were out of the 95% confidence 

interval of the nominal rate of 5%.  Second, in the second stage of fitting path models, 

both the direct computation approach and the TSSEM approach were appropriate for 

obtaining the parameter estimates and testing the significance of the parameters. The 

maximum likelihood estimation method which is the default estimation method for the 

path models may also be applied when the sample size is sufficient. The TSSEM 

approach has the advantage of providing different fit indices and overall model fit tests 

when the path model is not saturated. 

 

Limitations and Future Directions 

 

This dissertation was designed to assess the performance of the multivariate 

approaches for MASEM, especially at the second stage of the path modeling process. The 

same fixed-effects simulation conditions were applied as those chosen by Cheung (2002) 

and Cheung and Chan (2005). For simplicity, sample sizes were assumed to be equal 

within a meta-analysis. However, as can be seen from the real example presented in 

Chapter 5, sample sizes varied greatly across studies. Unequal sample sizes are much 

more realistic in applied research. A more authentic data set could be generated with the 

sample sizes varying within meta-analyses. The largest number of studies examined in 

the simulation study was 15. Though it is not uncommon for researchers to conduct meta-

analyses using less than 10 studies, it would also be reasonable to expand the number of 

studies and examine the performance of the methods under situations with larger numbers 

of studies. The parameter estimates would be more precise when the numbers of 

synthesized studies increase.  

Several issues were not investigated in this dissertation. One is the usefulness of 

Fisher‟s (1921) z transformation. Researchers have found that using the Fisher-z 

transformation of the raw correlation coefficients may result in more accurate estimation 

of synthesized correlation coefficients and estimation of the structural model parameters 
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as well (Becker & Fahrbach, 1994; Cheung & Chan, 2005; Furlow & Beretvas, 2005; 

Hafdahl, 2001). In this project, only the raw correlation coefficients were studied. Future 

study may examine the Fisher-z transformation and its impact on the second step of path 

analyses. 

One other issue for synthesizing correlation matrices is the missing data problem. 

When examining the correlation matrices in real studies, researchers may not always be 

interested in the same set of variables in their studies. Thus it is not uncommon for there 

to be „holes‟ in the examined correlation matrices. Pigott (1994) gave definitions for 

several patterns of missing data, such as missing completely at random (MCAR), missing 

at random (MAR) and missing not at random (MNAR). Researchers have conducted 

studies to examine the impact of different patterns of missing data on the synthesized 

correlation coefficients and the estimation of model parameters. Furlow and Beretvas 

(2005) concluded that MNAR data produced high levels of relative bias in correlations 

and model parameter estimates, and higher incorrect model rejection rates. It will be 

meaningful to eventually see how the different types of missing data affect the empirical 

performance of the GLS methods and the TSSEM methods at both the first and second 

stages of MASEM. 

Another limitation was that this dissertation investigated only analyses based on 

the correct model that generated the data. No misspecified path models were examined. 

The path model examined in this project was very simple and no overall model fit indices 

were examined. In particular, the real data example showed a saturated path model. For 

situations where more complicated second-stage path models need to be defined and 

evaluated, the TSSEM approach provides fit indices at the second stage of the MASEM 

analyses, which is an advantage over the GLS direct computation methods, for which no 

overall fit index has been derived. The misspecification of the structural model 

presumably would impacts the parameter estimations and model tests. Future studies may 

examine misspecified models, and development of an overall fit index for the direct 

computation method would also be beneficial. 

In addition, there were some limitations in generating the random-effects data for 

this dissertation. One correlation in the average population correlation matrix was 

assumed to be random and then the „random‟ population correlation matrices were 
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generated. However, the random correlation‟s values were necessarily restricted, in that 

the variance of this element cannot be too big. When the variance component exceeds a 

certain value (usually a very small number like .01), the „correlations‟ generated may 

exceed -1 or 1. Or it may lead to combinations or sets of correlation values that cannot 

exist together in any real correlation matrix. Because of this restriction, the resulting 

„between-study‟ variation was very small in this dissertation. The small variation caused 

problems in estimating the between-study covariance matrix (e.g., subject to boundary 

restrictions, etc.).  This low variance also led to there being only small differences 

between the random-effects data and the fixed-effects data, such that the empirical 

performance of the three methods was very similar in the random-effects data and fixed-

effects data situations. 
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Figure 4.2. Means of chi-square statistics for the GLSr, GLSm, and TSSEM approaches 

in Study 1 
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Figure 4.3. Standard deviations of chi-square statistics for the GLSr, GLSm, and TSSEM 

approaches in Study 1. 
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Figure 4.4.  Relative % bias of the path coefficients for the GLSr approach in Study 1. 



 63 

50 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
el

at
iv

e 
%

 B
ia

s

n

 b21

 g21

 g11

 g12

GLSm    k=5

50 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
el

at
iv

e 
%

 B
ia

s

n

 b21

 g21

 g11

 g12

GLSm    k=10

 

50 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
el

at
iv

e 
%

 B
ia

s

n

 b21

 g21

 g11

 g12

GLSm    k=15

 

 

Figure 4.5.  Relative % bias of the path coefficients for the GLSm approach in Study 1. 

 



 64 

50 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
el

at
iv

e 
%

 B
ia

s

n

 b21

 g21

 g11

 g12

TSSEM    k=5

 

50 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

R
el

at
iv

e 
%

 B
ia

s

n

 b21

 g21

 g11

 g12

TSSEM    k=10

 

 

50 200 400 600 800 1000

-5

-4

-3

-2

-1

0

1

2

3

4

5

Re
la

tiv
e 

%
 B

ia
s

n

 b21

 g21

 g11

 g12

TSSEM    k=15

 

 

Figure 4.6. Relative % bias of the path coefficients for the TSSEM approach in Study1. 
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Figure 4.7. Relative % bias of the standard errors of parameter estimates for the GLSr 

approach in Study 1. 
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Figure 4.8. Relative % bias of the standard errors of parameter estimates for the GLSm 

approach in Study 1. 
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Figure 4.9. Relative % bias of the standard errors of parameter estimates for the TSSEM 

approach in Study 1. 
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Table 4.1 

Rejection Rate of Stage 1 of TSSEM, GLSr and GLSm in Study 1 

k n 

TSSEM GLSr GLSm 

(%) (%) (%) 

5 50 8 12 6.2 

100 8.4 7.8 6.0 

200 6.2 7.6 5.2 

500 4.2 5.2 4.8 

1000 4.4 6.2 5.4 

10 50 10.8 22.4 9.2 

100 9.0 11.6 6.0 

200 6.4 6.6 4.6 

500 4.8 6.8 4.8 

1000 5.2 4.6 4.0 

15 50 8.2 26.8 6.6 

100 5.2 12.2 5.8 

200 3.8 9.4 7.4 

500 4.4 6.6 6.0 

1000 3.2 4.8 4.0 

Note. the bold faces numbers are the percentages that are outside of  

the 95% confidence interval of the rejection rate. 
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Table 4.2 

Chi-square Statistics and Their Standard Deviations in study 1 

 

Note. Theoretical means and standard deviations are 24 and 6.93 for k = 5, 54 and 10.39 

for k = 10 and 84 and 12.96 for k = 15. 

 

k n GLSm   GLSr   TSSEM 

Mean SD   Mean SD   Mean SD 

5 50 24.99 7.20   26.70 8.55   25.36 7.40 

100 24.20 7.05   25.10 7.62   25.13 7.54 

200 24.49 7.26   24.77 7.46   24.36 7.23 

500 23.96 6.95   24.11 7.05   23.71 7.07 

1000 24.40 6.85   24.52 7.05   23.45 7.02 

                   

10 50 56.70 11.05   62.96 13.40   56.67 11.68 

100 54.77 10.75   57.64 12.30   55.36 11.31 

200 54.66 10.08   55.86 10.56   54.54 10.41 

500 54.45 10.32   55.15 10.73   53.61 10.56 

1000 53.79 10.23   54.11 10.29   54.01 10.62 

                   

15 50 86.78 12.87   96.60 16.39   86.39 15.30 

100 84.92 12.67   89.67 14.11   84.04 15.29 

200 85.02 13.19   87.23 13.90   83.26 14.46 

500 84.28 12.90   85.05 13.20   83.01 14.14 

1000 83.93 13.01   84.44 13.07   80.61 14.41 
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Table 4.3 

Relative Percentage Bias of Path Coefficient Estimates in Study 1 

 

    k = 5 k = 10 k = 15 

n Methods 21  21  11  12  21  21  11  12  21  21  11  12  

50 TSSEM .09 1.39 .50 .41 .02 .80 .91 .15 .70 .53 .46 .15 

 GLSr 4.95 4.23 5.39 3.31 5.56 3.64 6.41 3.35 6.68 2.74 6.34 4.11 

 GLSm -0.66 .87 -.22 -.49 -1.09 -.01 -.30 -.50 .01 -.35 -.80 -.27 

              

100 TSSEM .12 1.36 .12 .84 -.08 .49 .20 -.04 .61 .19 .19 -.04 

 GLSr 2.31 1.44 2.88 1.62 2.96 1.45 3.23 2.01 3.32 1.11 3.13 1.94 

 GLSm -.51 -.07 -.20 -.19 -.22 -.20 -.14 -.09 -.02 -.73 -.21 -.29 

              

200 TSSEM -.21 .42 .07 .03 -.10 .54 .10 -.01 .42 -.11 .23 -.01 

 GLSr 1.20 1.21 1.24 .69 1.58 .51 1.21 1.09 1.70 .66 1.60 .94 

 GLSm -.14 .28 -.29 -.16 -.01 -.35 -.47 .00 .08 -.36 -.07 -.19 

              

500 TSSEM -.17 .47 -.08 .11 -.05 .31 .01 .00 -.03 .27 .05 .02 

 GLSr .52 .41 .55 .37 .53 .26 .65 .37 .59 .41 .48 .46 

 GLSm -.02 .10 -.07 -.01 -.11 -.11 -.02 -.06 -.05 .01 -.22 .02 

              

1000 TSSEM -.08 .29 -.01 -.02 .00 .17 .06 .00 .00 .09 .03 .02 

 GLSr .31 .22 .36 .13 .36 .10 .52 .10 .29 .24 .39 .20 

  GLSm .05 .04 .06 -.07 .06 -.11 .19 -.11 -.03 .04 .03 -.01 

Note. GLSr represents the original GLS method which uses sample correlations as substitute for population correlations in the 

asymptotic covariance matrix; GLSm represents the modified estimator of the asymptotic covariance matrix using mean correlation 

coefficient  
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Table 4.4 

Relative Percentage Bias of the Mean Standard Errors of the Path Coefficients Estimate in Study1 

    k = 5 k = 10 k = 15 

n Methods 21  21  11  12  21  21  11  12  21  21  11  12  

50 TSSEM 30.23 14.45 9.29 20.85 30.98 12.66 11.95 22.89 30.93 11.69 12.07 27.31 

 GLSr -18.69 -16.71 -18.49 -18.83 -18.43 -13.50 -19.39 -19.01 -16.81 -13.64 -20.33 -18.83 

 GLSm -8.71 -3.92 -8.08 -5.79 -3.12 .50 -7.94 -5.82 -1.44 1.96 1.98 -.95 

              

100 TSSEM 31.81 25.40 13.72 33.15 30.62 18.13 17.96 29.61 29.39 17.09 14.40 25.33 

 GLSr -11.79 -7.37 -5.87 -4.81 -14.22 -10.30 -12.43 -11.30 -11.04 -8.57 -4.24 -4.81 

 GLSm -5.74 -1.24 2.07 3.93 -6.47 -0.83 -3.99 -3.77 -3.01 -1.84 3.63 4.94 

              

200 TSSEM 30.72 18.38 17.65 29.75 32.42 15.93 19.54 30.07 31.81 17.09 18.94 29.32 

 GLSr -6.23 -3.27 -1.30 -.11 -12.51 -9.40 -1.40 -3.08 -5.76 -3.62 -2.62 -.11 

 GLSm -2.95 1.93 3.13 3.41 -7.67 -4.57 2.33 .55 -1.34 -0.47 1.24 1.43 

              

500 TSSEM 27.06 14.75 16.92 29.14 33.19 16.45 15.40 25.75 35.37 10.45 8.53 26.63 

 GLSr -1.81 -.90 -6.40 .44 -7.50 -3.63 -.60 -5.30 -2.05 5.66 -5.46 0.44 

 GLSm -1.39 .79 -4.99 1.55 -6.36 -2.34 1.23 -3.08 -1.08 7.06 -5.47 -0.88 

              

1000 TSSEM 33.42 16.82 15.64 25.52 32.49 17.90 10.25 22.75 30.12 11.61 18.22 21.87 

 GLSr -6.11 -4.61 -3.29 -3.61 -5.20 -1.25 1.81 -1.12 -5.81 0.38 -1.85 -3.61 

  GLSm -5.25 -4.14 -2.87 -1.92 -3.68 .18 1.25 -1.63 -4.42 2.05 -1.30 -4.06 

Note. GLSr represents the original GLS method which uses sample correlations as substitute for population correlations in the 

asymptotic covariance matrix; GLSm represents the modified estimator of the asymptotic covariance matrix using mean correlation 

coefficient  
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Figure 4.10. Mean standard errors of the path coefficients of each method in Study 1 

 

 

G12

-0.01

0.01

0.03

0.05

0.07

1 3 5 6 8 10 11 13 15

Conditions

A
b

s
o

lu
te

 S
E

GLSr

GLSmr

TSSEM

G21

0

0.02

0.04

0.06

0.08

1 3 5 6 8 10 11 13 15

Conditions

A
b

s
o

lu
te

 S
E

GLSr

GLSmr

TSSEM

B21

0

0.02

0.04

0.06

0.08

1 3 5 6 8 10 11 13 15

Conditions

A
b

s
o

lu
te

 S
E

GLSr

GLSmr

TSSEM

G11

-0.01

0.01

0.03

0.05

0.07

1 3 5 6 8 10 11 13 15

Conditions

A
b

s
o

lu
te

 S
E

GLSr

GLSmr

TSSEM



73 

Table 4.5 

Rejection Rates at Stage 1 of TSSEM, GLSr and GLSm in Study 2 

k n 

TSSEM GLSr GLSm 

(%) (%) (%) 

5 50 8.6 12.2 5.8 

100 8.2 7.4 5.6 

200 6.4 7.4 5.6 

500 4.0 5.2 4.8 

1000 4.6 6.4 5.2 

10 50 10.2 23 8.6 

100  9.0 11.4 6.0 

200  6.4 6.6 4.2 

500  5.0 6.8 5.2 

1000  4.8 4.8 4.6 

15 50  8.2 26.8 6.8 

100  4.6 12.2 5.6 

200  4.2 9.4 7.2 

500  5.4 6.6 6.0 

1000  3.2 4.6 4.2 

Note: The percentages that are out of the 95% confidence interval  

of the rejection rate are presented in bold face. 
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Table 4.6 

Chi-square Statistics and Their Standard Deviations in Study 2 

k n GLSm   GLSr   TSSEM 

Mean SD   Mean SD   Mean SD 

5 50 25.00 7.19  26.73 8.56  25.48 7.47 

100 24.18 7.06  25.10 7.62  25.12 7.57 

200 24.50 7.28  24.79 7.48  24.34 7.27 

500 24.00 7.01  24.13 7.09  23.73 7.08 

1000 24.43 6.88  24.53 7.06  23.46 7.00 

            

10 50 56.71 11.02  56.71 13.35  56.54 11.89 

100 54.80 10.69  54.80 12.29  55.28 11.38 

200 54.67 10.06  54.67 10.57  54.54 10.41 

500 54.47 10.34  54.47 10.74  53.68 10.54 

1000 53.86 10.23  53.86 10.28  54.00 10.58 

            

15 50 86.77 12.92  86.77 16.37  86.25 15.54 

100 84.98 12.64  84.98 14.08  84.03 15.34 

200 85.15 13.26  85.15 13.92  83.26 14.44 

500 84.25 12.99  84.25 13.26  82.95 14.18 

1000 83.98 12.89  83.98 13.00  80.86 14.20 
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Table 4.7 

Relative Percentage Bias of Path Coefficient Estimates in Study 2 

 

    k = 5 k = 10 k = 15 

n Methods 21  21  11  12  21  21  11  12  21  21  11  12  

50 TSSEM .63 .16 .61 .40 .64 -.76 .96 .35 .82 -.88 .50 .46 

 GLSr 5.54 1.92 5.43 3.33 6.50 1.15 6.52 3.70 6.75 1.44 6.22 3.93 

 GLSm -.16 -.86 -.20 -.52 -.37 -1.42 .01 -.59 -.24 -1.40 -.45 -.56 

              

100 TSSEM .44 -.86 .69 .16 .47 -1.03 .24 .16 .47 -.77 .22 .18 

 GLSr 2.23 1.41 2.96 1.59 2.59 2.42 2.79 1.77 2.87 2.25 3.15 1.91 

 GLSm -.38 -.10 -.28 -.16 -.48 .51 -0.50 -.34 -.48 .69 -.36 -.22 

              

200 TSSEM .34 -1.09 .14 -.03 .46 -.97 .15 .07 .57 -1.08 -.08 .22 

 GLSr 1.99 -1.51 1.28 .69 2.31 -1.68 1.40 1.09 2.21 -1.50 1.47 .96 

 GLSm .67 -2.38 -.23 -.17 .70 -2.55 -.20 -.02 .69 -2.61 -.16 -.21 

              

500 TSSEM .44 -.98 -.07 .12 .57 -1.22 .00 .01 .62 -1.38 .05 -.02 

 GLSr 1.50 -2.90 .56 .38 1.61 -2.96 .59 .38 1.66 -3.09 .68 .45 

 GLSm .98 -3.21 -.10 -.02 1.02 -3.26 -.02 -.09 1.03 -3.43 -.03 .01 

              

1000 TSSEM .55 -1.23 -.03 -.01 .57 -1.29 .05 .00 .59 -1.51 .05 -.01 

 GLSr .94 -1.87 .35 .14 .88 -1.96 .32 .20 .95 -1.98 .48 .13 

  GLSm .68 -2.04 .03 -.08 .58 -2.13 .00 -.02 .62 -2.12 .13 -.08 

Note. GLSr represents the original GLS method which uses sample correlations as substitute for population correlations in the 

asymptotic covariance matrix; GLSm represents the modified estimator of the asymptotic covariance matrix using mean correlation 

coefficient  
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Table 4.8 

Relative Percentage Bias of the Mean Standard Errors of the Path Coefficients Estimate in Study 2 

    k = 5 k = 10 k = 15 

n Methods 21  21  11  12  21  21  11  12  21  21  11  12  

50 TSSEM -22.89 -56.70 10.20 20.90 -39.70 -68.76 12.25 21.54 28.69 -49.78 -74.60 13.07 

 GLSr -49.13 -65.07 -18.68 -18.90 -60.52 -74.17 -20.26 -21.05 -67.36 -78.94 -19.45 -17.94 

 GLSm -42.71 -63.85 -8.64 -5.80 -56.14 -74.35 -3.90 -4.61 -63.01 -78.34 -6.56 -1.88 

              

100 TSSEM -39.40 -68.80 14.33 24.44 -55.71 -77.75 19.12 30.59 -63.64 -81.73 14.95 25.46 

 GLSr -56.10 -72.80 -5.20 -4.45 -68.15 -80.46 -4.68 -4.96 -73.56 -84.03 -8.85 -10.61 

 GLSm -55.71 -73.25 1.57 3.32 -65.68 -80.21 2.98 5.66 -72.08 -83.82 -1.10 -1.18 

              

200 TSSEM -55.62 -77.76 16.03 24.39 -68.09 -84.29 19.08 29.47 -73.47 -87.10 18.66 29.32 

 GLSr -65.42 -79.80 -1.42 -0.06 -75.08 -85.72 -5.74 -4.72 -79.80 -88.25 -6.91 -5.55 

 GLSm -64.54 -79.72 2.75 3.89 -74.63 -85.68 -0.11 -0.34 -78.89 -88.28 -3.47 -1.10 

              

500 TSSEM -71.09 -85.91 15.43 28.20 -79.36 -89.93 15.60 25.79 -83.22 -91.93 5.52 13.62 

 GLSr -78.91 -87.92 -5.93 0.45 -85.16 -91.56 -4.13 -3.67 -87.61 -93.05 -1.53 -5.98 

 GLSm -78.74 -87.99 -4.95 1.70 -84.81 -91.47 -0.97 -0.71 -87.54 -93.05 -0.12 -1.44 

              

1000 TSSEM -79.36 -89.93 15.82 25.93 -85.46 -92.73 10.20 22.82 -87.75 -94.12 16.64 17.05 

 GLSr -84.98 -91.51 -3.07 -3.29 -89.26 -93.97 -4.29 -5.01 -91.21 -95.08 -0.70 -3.95 

  GLSm -85.00 -91.56 -1.47 -1.35 -89.27 -93.99 -3.74 -3.18 -91.20 -95.08 0.19 -4.27 

Note: GLSr represents the original GLS method which uses sample correlations as substitute for population correlations in the 

asymptotic covariance matrix; GLSm represents the modified estimator of the asymptotic covariance matrix using mean correlation 

coefficient  
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Figure 4.11. Relative % bias of the path coefficients for the GLSr approach in Study 2, 

fixed-effects analyses. 
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Fure 4.12. Relative % bias of the path coefficients for the GLSm approach in Study 2, 

fixed-effects analyses. 
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Figure 4.13. Relative % bias of the path coefficients for the TSSEM approach in Study 2, 

fixed-effects analyses. 
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Figure 4.14. Relative % bias of the standard error of the path coefficients for the GLSr 

approach in Study 2, fixed-effects analyses. 
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Figure 4.15. Relative % bias of the standard error of the path coefficients for the GLSm 

approach in Study 2, fixed-effects analyses. 
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Figure 4.16. Relative % bias of the standard error of the path coefficients for the TSSEM 

approach in Study 2, fixed-effects analyses. 
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Figure 4.17.  Mean standard errors of the path coefficients of each method in Study 2 
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Figure 4.18. Relative % bias of the path coefficient estimates for the GLSm approach in Study 2, 

random-effects analyses. 
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Figure 4.19. Relative % bias of the standard error of the path coefficient estimates for the GLSm 

approach, random-effects analyses. 
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Table 5.1 

Sample Size and Correlation Coefficients 

Sample 

ID 

Sample 

Size N 

Cog_Per 

r21 

Som_Per 

r31 

Self_Per 

r41 

Cog_Som 

r32 

Cog_Self 

r42 

Som_Self 

r43 

1 51 -0.52 -0.43 0.16 0.57 -0.18 -0.26 

2 51 0.16 -0.47 0.18 -0.59 -0.37 -0.22 

3 24 -0.28 -0.53 0.39 0.67 -0.36 -0.72 

4 24 -0.28 -0.49 0.51 0.67 -0.41 -0.72 

5 24 0.21 -0.27 0.52 0.13 -0.04 -0.59 

6 24 -0.15 -0.4 0.35 0.67 -0.36 -0.72 

7 24 -0.24 -0.24 0.36 0.67 -0.41 -0.72 

8 24 -0.06 -0.16 0.22 0.13 -0.04 -0.59 

9 100 0.23 0.08 0.51 0.45 -0.29 -0.44 

10 100 0.08 0.08 0.35 0.45 -0.29 -0.44 

11 199 0.58 0.57 0.55 0.6 -0.57 -0.68 

12 128 0.14 0.02 0.13 0.56 -0.53 -0.27 

13 14 -0.39 -0.17 0.19 0.21 -0.54 -0.43 

14 142 -0.55 -0.48 0.66 0.47 -0.38 -0.46 

15 37 0.53 -0.12 0.03 0.52 -0.48 -0.40 

16 58 -0.29 -0.36 0.41 0.55 -0.6 -0.69 

17 70 -0.09 -0.29 0.39 0.62 -0.46 -0.54 

18 70 -0.01 -0.16 0.42 0.62 -0.46 -0.54 

19 30 -0.27 -0.13 0.15 0.63 -0.68 -0.71 

20 56 -0.76 -0.63 0.63 0.76 -0.65 -0.61 

Note. Some of the correlation vectors are from the same primary study. In this dissertation, they 

are assumed to be from independent samples. Cog-, Per-, Som-, and Self- represent cognitive 

anxiety, performance, somatic anxiety, and self-confidence, respectively. Thus, Cog_Per refers 

to the correlation between cognitive anxiety and performance; Som_Per represents the 

correlation between somatic anxiety and performance; Self-Per is the correlation between self-

confidence and performance; Cog-Som is the correlation between cognitive anxiety and somatic 

anxiety; Cog-Self is the correlation between cognitive anxiety and self-confidence; Som-Self is 

the correlation between somatic anxiety and self-confidence. 
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Table 5.2 

Pooled Correlation Matrix by the GLSr, GLSm and TSSEM approach 

-- Fixed-effects Analysis 

Method 

Cog-

Per   

Som-

Per   

Self-

Per   

Cog-

Som   

Cog-

Self   

Som-

Self 

            

GLSr -.08  -.09  .47  .53  -.48  -.68 

            

GLSm -.01  -.10  .40  .50  -.43  -.50 

            

TSSEM -.06  -.16  .37  .48  -.40  -.47 

                        

 

 

 

Table 5.3 

Path Coefficients and Standard Errors Obtained by the GLSr, GLSm and 

 TSSEM approach – Fixed-effects Analysis 

Method  
11

ˆ   
12

ˆ   
13

ˆ  

  ( 11SE )  ( )12SE   ( 13SE ) 

TSSEM  .108  -.019  .408 

  (.031)  (.033)  (.033) 

       

GLSm  .180  .069  .516 

  (.030)  (.031)  (.028) 

       

GLSr  .110  .207  .652 

  (.036)  (.046)  (.035) 
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Figure 5.1. Path model showing the CSAI-2 and performance relationship 
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APPENDIX A 

Direct Decomposition of the Correlation Coefficients in the Path Model 
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Note. The correlation coefficient 23r  was treated as random in the random-effects data 

generation. As can be seen here that the most affected path coefficients are 21  and 12 . 
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