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ABSTRACT

Estimating parameters for reactive contaminant transport models can be a very computationally

intensive. Typically this involves solving a forward problem many times, with many degrees of

freedom that must be computed each time. We show that reduced order modeling (ROM) by

proper orthogonal decomposition (POD) can be used to approximate the solution to the forward

model using many fewer degrees of freedom. We provide background on the finite element method

and reduced order modeling in one spatial dimension, and apply both methods to a system of linear

uncoupled time-dependent equations simulating reactive transport in a column. By comparing

the reduced order and finite element approximations, we demonstrate that the reduced model,

while having many fewer degrees of freedom to compute, gives a good approximation of the high-

dimensional (finite element) model. Our results indicate that one may substitute a reduced model

in place of a high-dimensional model to solve the forward problem in parameter estimation with

many fewer degrees of freedom.
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CHAPTER 1

INTRODUCTION

The importance of freshwater supplies has been no secret in recent years. In order to sustain

human life (as well as the lives of countless other organisms) it is crucial that freshwater be not

only available, but also clean. In recent decades, the cleanliness of water supplies has been a topic of

serious private and public concern, with drinking water standards being adopted in many locations.

In the United States, both the Clean Water Act and the Safe Drinking Water Act were put into

law in the 1970s. These laws enforced more stringent standards than previous US drinking water

standards.

Increasingly stringent water standards seem to be the trend as research continues to reveal

the adverse effects of contaminant substances. A contaminant is any solute that is introduced

into a subsurface groundwater supply due to human activity (Freeze and Cherry, 1979). By this

definition, a solute does not have to cause drinking water to be unsafe in order to be considered

a contaminant. Clearly, there are any number of ways in which contaminants may be introduced

into a groundwater supply, including fossil fuel emissions, the use of pesticides and fertilizers, and

the careless disposal of waste.

Groundwater comprises the vast majority of Earth’s available fresh water. It is estimated that

about 30% of Earth’s fresh water supply is stored in subsurface aquifers, while about 68% of Earth’s

fresh water is stored in ice caps and glaciers (Shiklomanov, 1993). Contamination of subsurface

water sources is a serious problem, yet the study of subsurface problems faces many obstacles.

Despite scientific advances in a variety of fields, uncertainty and difficulty of observation obstruct

our knowledge of the subsurface environment (Scheibe et al., 2008).
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Because of the difficulty of directly observing processes that occur underground, computer

simulation is useful to gain understanding in subsurface problems. Theoretical models describe the

physical processes that occur in the subsurface environment. These models may be very complex,

taking into account various types of subsurface reactions. A challenge is that there are often

parameters in the theoretical models for which exact values are not known. These values must

be determined in order to transform the theoretical model into a simulation that describes what

occurs in the subsurface environment.

Fortunately, there are computational tools that can be used to find a set of parameters such

that the theoretical model satisfies some experimentally observed data. These tools, however, are

computationally costly to use as they require computing the solution to the theoretical model

many times. If the complexity of computing the solution to the theoretical model can be reduced,

then the process of estimating the model parameters becomes less computationally complex. In

this work, we demonstrate that we can replace the high-dimensional approximation of the solution

(using the finite element method) to the theoretical model with a low-dimensional approximation

while maintaining accuracy. To do this, we use a proper orthogonal decomposition of particular

solutions to the model to create a reduced order model.

In this work, we will first discuss the mathematical tools that we will be using. In Chapter 2

we will discuss the finite element method, which is a typical high-dimensional model that might be

used to solve the theoretical model. We also give some examples using a finite element code that

we developed. Our discussion of the finite element method also lays a foundation for Chapter 3,

where we will discuss the proper orthogonal decomposition and the reduced order model. We will

also give some sample results, using a reduced order code that we developed. In Chapter 4, we

discuss a realistic problem relating to subsurface reactive contaminant transport. In Chapter 5, we

show results from applying a reduced model to the problem of interest, and compare the reduced

order approximations to their finite element counterparts.
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CHAPTER 2

A BRIEF OVERVIEW OF THE FINITE ELEMENT

METHOD IN ONE SPATIAL DIMENSION

The finite element method does not denote a single method, but rather a class of methods based

on variational methods and function approximation. The finite element method is widely used for

approximating the solution to differential equations; it is applied frequently to partial differential

equations that do not have an available exact solution. Finite element methods were developed

initially by engineers in the 1940s and 1950s for use in applications including structural analysis

and elasticity. It was somewhat later that finite element methods were considered and analyzed

rigorously by mathematicians. The popularity of the method has dramatically increased as it

continues to be an area of interest both for practical application as well as for analysis. Finite

element methods have advantages over other methods such as finite difference in that they can

easily be adapted for use on non-uniform grids or irregular domains, and also in the ease with

which derivative boundary conditions can be implemented in the finite element model.

In this chapter we give a high-level presentation of the mathematical underpinnings of the finite

element method and describe (with examples) how a model is constructed for a specific problem.

Finally, we offer numerical results from applying finite element software that we have developed to

some example problems.
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2.1 Construction of the Finite Element Model

2.1.1 The General Weak Form

To use the finite element method, it is first necessary to rewrite the problem in its variational,

or weak, form. As an example, consider a general elliptical problem L(u) = F where L is a given

linear operator. The general expression of the weak problem is











seek u ∈ V satisfying

A(u, v) = F (v) ∀v ∈ V

(2.1)

where V is a Hilbert space (a complete inner product space), A(·, ·) is a bilinear form on V × V ,

and F (·) is a linear functional on V . Recall that a linear functional maps each v ∈ V to a unique

value F (v) ∈ R
1 and is linear, i.e.,

F (αu + βv) = αF (u) + βF (v) (2.2)

for u, v ∈ V and arbitrary scalars α and β. Additionally, F (·) is bounded if

sup
v∈V

|F (v)|

‖v‖
< ∞, v 6= 0 (2.3)

where ‖·‖ denotes the norm induced on V . Similarly, a bilinear form A(·, ·) maps V × V into R
1

and satisfies

A(α1u1 + α2u2, v) = α1A(u1, v) + α2A(u2, v) (2.4)

A(u, β1v1 + β2v2) = β1A(u, v1) + β2A(u, v2) (2.5)

for u, u1, u2, v, v1, v2 ∈ V and scalars α1, α2, β1, β2. Applying the form of Equation 2.1 to a specific

problem defines A(·, ·) and F (·), and V may be specified as an appropriately chosen Hilbert space.

A unique solution u to Equation 2.1 is guaranteed by the Lax-Milgram Theorem.

Theorem 2.1.1 Lax-Milgram Theorem (Lax and Milgram, 2005) Suppose V is a Hilbert space,

4



u, v ∈ V , and A(·, ·) : V × V → R is a bilinear form on V satisfying

|A(u, v)| ≤ M‖u‖‖v‖ ∀u, v ∈ V (2.6)

and

A(u, u) ≥ m‖u‖2 ∀u ∈ V (2.7)

where m and M are positive constants that do not depend on u or v and ‖·‖ denotes the induced

norm on the space V . Then, if F (·) : V → R
1 is a bounded linear functional on V , there is a unique

u ∈ V that satisfies Equation 2.1. Additionally, u is bounded by

‖u‖ ≤
1

m
‖F‖. (2.8)

Because we are working with differential equations, the weak form of the problem will contain

derivatives. Because of this, the space V must be constrained to include only functions that are

sufficiently smooth. A function is sufficiently smooth if it has enough derivatives, at least in a weak

sense, to satisfy the weak problem. A weak derivative of a function satisfies integration by parts and

is equivalent to the conventional derivative at all points where the conventional derivative exists

(Burenkov, 1998). Thus, V must belong to the family of Hilbert spaces known as Sobolev spaces,

which have the additional requirement that all functions in the space have a minimum number of

weak derivatives. We use the notation Hr to denote the Sobolev space where all elements in the

space have at least r weak derivatives. In working with linear second-order PDEs, we are interested

in the space H1 =
{

w ∈ L2 s.t. w has one weak derivative in L2}. We may also further restrict

the space V to satisfy certain boundary conditions. If the problem is posed over a domain Ω with

boundary ∂Ω, let us use the notation H1
0 =

{

w ∈ H1 s.t. w = 0 on ∂Ω
}

. Let us also define

‖u‖r =

(

r
∑

a=0

(∫

Ω
Dau dx

)2
)1/2

(2.9)

5



where Da is the ath order differential operator in one dimension. Given this notation, the standard

L2 norm is equivalent to ‖·‖0. Of particular interest are the H1 and H0 (or L2) norms.

‖u‖0 = ‖u‖L2
=

(∫

Ω
u2 dx

)1/2
(2.10)

‖u‖1 =

(∫

Ω
(u)2 dx +

∫

Ω
u′2 dx

)1/2
(2.11)

Clearly, ‖·‖0 ≤ ‖·‖1.

In order to use finite elements, it is necessary to approximate the infinite-dimensional problem

(Equation 2.1) by a finite-dimensional problem. If we allow Sh to be an n-dimensional subspace of

V , then we may define a discrete weak problem that is analogous to Equation 2.1,











seek uh ∈ Sh satisfying

A(uh, vh) = F (vh) ∀vh ∈ Sh
(2.12)

Existence and uniqueness of uh satisfying Equation 2.12 is guaranteed under the Lax-Milgram

theorem, since Sh is a subspace of V . Note that we still have specified neither the Hilbert space V

nor the subspace Sh. We call uh the trial function, and vh ∈ Sh a test function.

Example 2.1.1. At this point, it is helpful to demonstrate application of the general discrete

weak form to a specific example problem. Let us consider the following ordinary differential equation

(ODE) in one spatial dimension with homogeneous Dirichlet boundary conditions.

−u′′ = f(x) 0 < x < 1 (2.13)

u(0) = u(1) = 0 (2.14)

Since the problem is a second-order ODE and has homogeneous Dirichlet boundary conditions,

we choose H1
0 as the space over which to pose the weak problem. Both sides of the equation are

multiplied by v ∈ H1
0 and integrated with respect to the spatial domain, using integration by parts

on the u′′ term.

−u′v

∣

∣

∣

∣

1

x=0
+

∫ 1

0
u′v′ dx =

∫ 1

0
fv dx (2.15)

6



and the integrated term is zero since v ∈ H1
0 is zero on the boundary. Equation 2.15 has the form

of Equation 2.1 with

A(u, v) =

∫ 1

0
u′v′ dx (2.16)

F (v) =

∫ 1

0
f(x)v dx (2.17)

Clearly F (v) is a bounded linear functional on H1
0 and

|A(u, v)| ≤ M‖u‖‖v‖ (2.18)

|A(u, u)| ≥ m‖u‖2 (2.19)

for all u, v ∈ H1
0 , and the Lax-Milgram theorem guarantees a unique solution.

Choosing an n-dimensional subspace Sh
0 ⊂ H1

0 , the discrete weak form of the problem may be

cast in the form of Equation 2.12 with

A(uh, vh) =

∫ 1

0
(uh)′(vh)′ dx (2.20)

F (vh) =

∫ 1

0
f(x)vh dx (2.21)

It is helpful to rewrite the discrete weak problem in the form A(uh, vh) = F (vh):

∫ 1

0
(uh)′(vh)′ dx =

∫ 1

0
f(x)vh dx (2.22)

2.1.2 Boundary Conditions

Before proceeding, let us consider the treatment of boundary conditions in the finite element

model. In Example 2.1.1, the homogeneous boundary conditions were imposed on the space, Sh ⊂

H1
0 . Boundary conditions that must be imposed on the space over which the problem is posed are

called essential boundary conditions. In the case of homogeneous Dirichlet boundary conditions

(Example 2.1.1), the boundary conditions were imposed on the space by seeking v ∈ Sh
0 ⊂ H1

0 . In

the case of inhomogeneous Dirichlet conditions, it is necessary to also include in Sh functions that

7



are nonzero at the nonzero boundary points. This will be discussed further in Section 2.2.2.

There may also be boundary conditions that are satisfied by the weak form of the problem

alone, and do not need to be imposed on the space V . For instance, if Equation 2.14 had specified

u′(0) = 0 rather than u(0) = 0, that boundary condition would not have had to be imposed on the

space. Then choosing the space to be all functions in H1 that are zero at x = 1 would be sufficient.

The integrated term in Equation 2.15 would still vanish. Boundary conditions that do not need to

be imposed on the space but are satisfied by the weak form are called natural boundary conditions.

The ease of implementing these natural boundary conditions is an advantage that finite element

methods hold compared to finite difference methods.

2.1.3 Forming a Linear System of Equations

We now want to show how Equation 2.1 leads to a linear system of equations. Because Sh was

chosen to be finite dimensional, we can choose a basis for it. If Φ = {φi(x)}n
i=1 is a basis for Sh,

then the discrete solution uh ∈ Sh may be expressed by the linear combination

uh =
n
∑

j=1

cjφj(x) (2.23)

for a set of unknown constants {cj}
n
j=1. Moreover, finding uh such that Equation 2.12 is satisfied

for all vh ∈ Sh is equivalent to finding uh such that Equation 2.12 is satisfied for all vh ∈ Φ. This

defines a system of n equations in n unknowns

n
∑

j=1

cjA(φj(x), φi(x)) = F (φi(x)) (2.24)

for i = 1 . . . n. Or, in matrix notation,

A~c = ~F (2.25)
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where

Ai,j = A(φj(x), φi(x)) (2.26)

Fi = F (φi(x)) (2.27)

~c = (c1, . . . , cn)T (2.28)

Example 2.1.3. Returning to the problem from Example 2.1.1, we may substitute Equation

2.23 into Equation 2.22 as long as Φ is a basis for the subspace Sh.

n
∑

j=1

cj

∫ 1

0

∂φj

∂x

∂vh

∂x
dx =

∫ 1

0
f(x)vh dx (2.29)

Once again, in order to ensure that Equation 2.29 holds for all vh ∈ Sh, it is enough to ensure that

the equation holds for all vh ∈ Φ. Therefore, we have n equations

n
∑

j=1

cj

∫ 1

0

∂φj

∂x

∂φi

∂x
dx =

∫ 1

0
f(x)φi dx i = 1 . . . n (2.30)

This problem may be restated in the form of 2.25, where

Ai,j = A(φj(x), φi(x)) =

∫ 1

0

∂φj

∂x

∂φi

∂x
dx (2.31)

Fi =

∫ 1

0
f(x)φi dx (2.32)

It is important to note that the entries of the matrix A and the vector ~F are integrals. In order

to implement this method on a machine, it is necessary to compute the value of these integrals.

Numerical quadrature techniques discretize the interval (a, b) with a number of nodes x1, . . . xn and

approximate the integral
∫ b

a
f(x) dx ≈

n
∑

i=1

wif(xi) (2.33)

where the weight values, {wi}
n
i=1, are constants determined by the quadrature rule being used.

If the functions {φi}
n
i=1 are polynomials, then it is possible to choose a quadrature rule that will

be able to compute the value of the integral exactly. However, for a general function f or a
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problem with variable coefficients, we will not be able to calculate the integrals exactly, even in one

dimension. This error in the integral computation introduces some error in the entries of A and ~F .

If it is not feasible to choose a quadrature rule that can compute the value of the integrals exactly,

it is important to choose a rule that is sufficiently accurate that the error of the finite element

approximation is not dominated by the quadrature error.

2.1.4 Choosing a Basis

We are free to choose any basis Φ for Sh, although there are certain advantages and disadvan-

tages that will result from the choice. If the quantity A(φj(x), φi(x)) is non-zero for all i and j,

then the matrix A in Equation 2.25 will be dense. This is problematic since n, the dimension of

A, is usually quite large. The computational complexity of finding the solution is unacceptable.

However, if A(φj(x), φi(x)) = 0 for many i, j pairings, then the matrix A becomes sparse. This is

accomplished by choosing φi ∈ Φ to have compact support over the domain. This means that each

φi is non-zero over only a relatively small portion of the domain.

The sparsity introduced into A clearly varies based on the choice of Φ. In finite element

methods, the most common choice for Φ is a set of continuous piecewise polynomials; other choices

of basis functions, such as wavelets or sine and cosine functions, lead to other methods. First, it is

necessary to discretize the domain into a set of discrete points over which to compute the solution.

Then, we choose the functions {φi}
n
i=1 defined over the grid that will form the basis of Sh. For

many problems, such as the problem defined over H1
0 in 2.1.1, we can choose a nodal basis. By

partitioning the domain of the problem into a grid, or mesh, of discrete points, or nodes, we can

choose Φ as a set of continuous piecewise polynomials of degree k that form a nodal basis, i.e., each

function in the basis has a value of one at the node it is associated with, and is zero at all other

nodes in the domain. This set of piecewise continuous polynomials of degree k form a basis for the

set of all piecewise continuous polynomials of degree less than or equal to k over the domain. The

effect on the matrix A is that it takes on a banded structure, which yields a problem that is much

less computationally costly to solve, and which is comparable to the coefficient matrices that are

typically obtained from other numerical schemes (e.g., finite difference).
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Example 2.1.4. Consider the problem from Example 2.1.1. Let the domain [0, 1] be uniformly

partitioned into n + 1 subintervals by n + 2 nodes, x0, x1, . . . , xn+1 where x0 = 0 and xn+1 = 1.

The space between nodes is given by h =
1

n + 1
. As discussed previously, we choose Sh ⊂ H1

0

both to satisfy the homogeneous Dirichlet boundary conditions and to satisfy the weak form (basis

functions must have at least one weak derivative). Let us choose Φ, the set of basis functions, to

be a nodal basis for H1
0 . We choose Φ = {φi}

n
i=1 where φi(xi) = 1 and φi(xj) = 0 for j 6= i. That

is,

φi(x) =



































(x − xi−1)

h
for x ∈ [xi−1, xi]

(xi+1 − x)

h
for x ∈ [xi, xi+1]

0 otherwise

(2.34)

These functions satisfy the homogeneous Dirichlet boundary condition from Equation 2.14, and it

can be shown that they form a basis for the space of all continuous piecewise-linear polynomials

defined over the nodes x0, . . . , xn+1 that satisfy the boundary conditions.

By using these basis functions in the computation of the entries of the matrix A, we see that

the matrix will be sparse and banded. Equation 2.31 contains the expression for each component

of A. Now that the basis functions are chosen, we see that

Ai,j =

∫ 1

0

∂φj

∂x

∂φi

∂x
dx = 0 for |i − j| > 1 (2.35)

That is, within row i of matrix A, the only nonzero entries will be Ai,i−1, Ai,i, and Ai,i+1; A is a

banded matrix with a bandwidth of three. With this knowledge of A, it is clear that solving the

linear problem in Equation 2.25 will be much less complex than if A were a dense matrix. Solving

a dense system would require O(n3) operations, but solving a tridiagonal system can be done in

O(n) operations. This is the benefit of choosing basis functions that have compact support over

the domain. Since this is an ODE, all that is required from this point forward is to compute the

components of A and ~F , and then solve for ~c. The values of ~c are the coefficients needed to define

uh(x), the finite-element approximation to the steady-state solution of the problem specified by

Equations 2.13,2.14.
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2.1.5 Spatial Error

Clearly the accuracy of approximating an arbitrary function over the domain [x0, xn+1] using a

linear combination of n piecewise polynomials is affected both by n, the number of basis functions,

and p, the degree of the piecewise polynomials used in the approximation. Cea’s (or Galerkin’s)

Lemma gives an estimate for the error of uh in the induced norm on the space over which the

problem is posed.

Theorem 2.1.2 Cea’s or Galerkin’s Lemma (Cea, 1964) Let A(·, ·) be a bilinear form on V ×V

that satisfies Equations 2.6,2.7, and let F (·) be a bounded linear functional on V . Let Sh be a finite

dimensional subspace of V . Then there exists a unique uh ∈ Sh satisfying

A(uh, vh) = F (vh) ∀vh ∈ Sh (2.36)

If u is the unique solution to Equation 2.1 guaranteed by the Lax-Milgram Theorem, then

‖u − uh‖V ≤
M

m
inf

vh∈Sh

‖u − vh‖V (2.37)

where ‖·‖V denotes the induced norm on the space V and M,m are the independent constants in

the Lax-Milgram Theorem.

This means that the approximation uh ∈ Sh is the best approximation to u that can be found in

Sh. However, this also gives a means of bounding the error of the approximation. If we have the

interpolant of u, Ihu ∈ Sh, then

inf
χh∈Sh

‖u − χh‖V ≤ ‖u − vh‖V for any vh ∈ Sh (2.38)

and so,

inf
χh∈Sh

‖u − χh‖V ≤ ‖u − Ihu‖V (2.39)

therefore,

‖u − uh‖V ≤
M

m
‖u − Ihu‖V (2.40)
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If we can bound the error of the Sh interpolant (‖u− Ihu‖V ), in terms of h, then we have a bound

(up to a constant) for the error of the approximation (‖u − uh‖V ).

Now, from approximation theory, one can obtain an estimate for the error in the interpolant of

a function based on the smoothness of the interpolating function. We have that if Ihu is the Sh

interpolant of u and Sh is the set of continuous piecewise polynomials of degree ≤ k, then there is

an independent positive constant ξ1 such that

‖u − Ihu‖1 ≤ ξ1h
k‖u‖k+1 (2.41)

and, consequently,

‖u − uh‖1 ≤ ξ1h
k‖u‖k+1 (2.42)

provided that u ∈ Hk+1. This gives an upper bound on the error of the finite element approximation

in the H1 norm. As discussed previously, it is known that ‖·‖L2
= ‖·‖0 ≤ ‖·‖1, but we wish to

be able to bound the L2 error in terms of a power of h. The Aubin-Nitsche Lemma (also known

as “Nitsche’s trick”) (Braess, 2001) gives the result that, if u is sufficiently smooth (i.e., u ∈ H2),

then for some independent constant ξ2,

‖u − uh‖0 ≤ ξ2h
k+1‖u‖k+1 (2.43)

Thus, if Sh is the space of continuous linear piecewise polynomials (k = 1) and u ∈ H2, then

optimal convergence rates with respect to spatial discretization will be O(h) in the H1 norm, and

O(h2) in the H0 (or L2) norm. These rates are quasi-optimal in the sense that if u is not smooth

enough, i.e. u ∈ H1 but u 6∈ H2, then it will not be possible to obtain these rates. This is not a

limitation due to the finite element method, but rather a limitation due to the nature of the specific

function that we are trying to approximate.

2.1.6 Time-dependent Problems

Thus far, we have considered the finite element method applied to a one-dimensional steady-

state ODE. However, we wish to apply the method to transient problems. Let us consider the heat
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or diffusion equation in one spatial dimension.

ut − uxx = f(x, t) 0 < x < 1, t > 0 (2.44)

u(x, 0) = 0 for 0 < x < 1

u(0, t) = u(1, t) = 0

(2.45)

Multiplying both sides by a test function v ∈ H1
0 and integrating both sides, one may write the

general weak form of the problem

∫ 1

0
utv dx +

∫ 1

0
uxvx dx =

∫ 1

0
fv dx ∀v ∈ H1

0 (2.46)

After integration by parts, the integrated term vanishes since v ∈ H1
0 . At each time level, we

discretize in space using piecewise polynomials as before. However, we must also address how to

handle the time derivative. We could write uh(x, t) =
n
∑

j=1
cj(t)φj(x) and substitute the summation

into the discrete weak problem for uh. This would result in a system of ODEs to solve at each

time step. Another option is to handle the time derivative using a finite element or finite difference

approximation to discretize in time. There is no advantage here to using a finite element approxi-

mation in the time domain, and so we choose to use a finite difference approximation. To preserve

both simplicity and stability, we use the first-order backward difference formula to discretize the

time term.

ut(x, tk) =
u(x, tk) − u(x, tk−1)

∆t
+ O(∆t) (2.47)

This substitution will introduce an additional error of O(∆t). Once the substitution is made, we

have the difference equation

1

∆t
uk −

1

∆t
uk−1 − uk

xx = fk (2.48)

where uk = u(x, tk), uk
xx = uxx(x, tk), and fk = f(x, tk). Now, we multiply both sides of the

equation by a test function, v ∈ H1
0 , and integrate with respect to the spatial domain.

1

∆t

∫ 1

0
ukv dx −

1

∆t

∫ 1

0
uk−1v dx +

∫ 1

0
uk

xvx dx =

∫ 1

0
fkvdx (2.49)
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Choosing uh, vh ∈ Sh where Sh ⊂ H1
0 , we have the fully discrete problem

1

∆t

∫ 1

0
(uh)kvh dx +

∫ 1

0
(uh

x)kvh
x dx =

∫ 1

0
fkvhdx +

1

∆t

∫ 1

0
(uh)k−1vh dx (2.50)

The solution must now be acquired by stepping through time, solving the linear system at each

step, with error O(∆t) derived from the time discretization.

2.2 Computational Examples

We have developed a code that implements the finite element method as described above.

To verify that our code is working properly and computing the correct results, we will consider

problems with manufactured solutions. This will allow us to closely analyze the error of our finite

element code, since the exact solution is available. The code is written in the Fortran programming

language, and all computations are performed using double precision arithmetic.

2.2.1 Diffusion Equation with Homogeneous Dirichlet Boundary Conditions

Let us continue to consider the example problem from Equation 2.44 subject to boundary and

initial conditions from Equation 2.45. The manufactured solution u(x, t) = t sin(πx) satisfies the

initial and boundary conditions. If we let f(x, t) = sin(πx) + tπ2 sin(πx), then the solution also

satisfies the PDE itself. As before, the weak form of the problem may be written

1

∆t

∫ 1

0
ukv dx −

1

∆t

∫ 1

0
uk−1v dx +

∫ 1

0
uk

xvx dx =

∫ 1

0
sin(πx)v dx +

∫ 1

0
tkπ

2 sin(πx)v dx (2.51)

We choose Sh ⊂ H1
0 to be the space of continuous piecewise linear polynomials on x ∈ [0, 1] that

are zero on the boundary. Since the exact solution, u(x, t) = t sin(πx) ∈ H2, we expect to obtain

the optimal convergence rates in both the H1 and the L2 norms. The term involving uk−1 can be

moved to the right-hand side of the equation, leaving only terms involving the unknown coefficients

15



Table 2.1: L2 Error of Finite Element Solution to Example Problem in Section 2.2.1 at
t = 5 Using ∆x = 10−4

∆x L2 Error Convergence Rate

0.25000 0.47238×10−1 –
0.12500 0.11789×10−1 2.0025
0.06250 0.29407×10−2 2.0032
0.03125 0.72981×10−3 2.0106

on the left-hand side. At time level k, uk may also be substituted for the approximation
n
∑

i=1
ck
i φi(x).

1

∆t

n
∑

i=1

ck
i

∫ 1

0
φiv

h dx +

n
∑

i=1

ck
i

∫ 1

0
(φi)xvh

x dx

=

∫ 1

0
sin(πx)vh dx +

∫ 1

0
tkπ

2 sin(πx)vh dx +
1

∆t

∫ 1

0
(uh)k−1vh dx

(2.52)

If we test this equation against every function vh ∈ {φi}
n
i=1, then we have n equations with n

unknowns, comprising a linear system. Since the analytical solution is readily available for this

problem, we demonstrate the convergence of the method with respect to time in the L2 norm,

and with respect to space in the H1 and L2 norms. First, we use a constant time discretization,

∆t = 10−5, and vary the grid spacing. We expect the error in the L2 norm to have second-order

convergence, and for the error in the H1 norm to have first-order convergence. Convergence rates

are computed by comparing the error, Eh1
, of the approximation on a grid with uniform node

spacing h1 with the error, Eh2
, of the approximation of a grid with uniform node spacing h2

rh2
=

ln

(

Eh1

Eh2

)

ln

(

h1

h2

) (2.53)

The error and convergence rates in the L2 norm are displayed in Table 2.1 and the corresponding

figures for the H1 norm are found in Table 2.2. To test for convergence with respect to temporal

discretization, the spatial discretization is fixed at h = ∆x = 10−4 and we investigate changes
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Table 2.2: H1 Error of Finite Element Solution to Example Problem in Section 2.2.1 at
t = 1 Using ∆t = 10−5

∆x H1 Error Convergence Rate

0.25000 0.50294 –
0.12500 0.25171 0.99862
0.06250 0.12590 0.99948
0.03125 0.62955×10−1 0.99989

Table 2.3: L2 Error of Finite Element Solution to Example Problem in Section 2.2.1 at
t = 1 Using ∆t = 10−4

∆t L2 Error Convergence Rate

0.0200 0.11811×10−1 –
0.0100 0.64359×10−2 0.87592
0.0050 0.33692×10−2 0.93374
0.0025 0.17252×10−2 0.96564

in the error as ∆t changes. The behavior of the error and the convergence rates with respect to

the time discretization are presented in Table 2.3. The data in these tables demonstrate that this

implementation of the finite element method does achieve the optimal convergence rates.

2.2.2 Advection-Dispersion Equation with Inhomogeneous Dirichlet Boundary

Conditions

The problem we are ultimately interested in solving is the advection-dispersion equation with

inhomogeneous Dirichlet boundary conditions. So, let us consider the problem

ut − uxx + ux = f(x, t) 0 < x < 1, t > 0 (2.54)
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u(x, 0) = (1 − x)3 for 0 < x < 1

u(0, t) = e−5t, u(1, t) = 0 for t > 0

(2.55)

The manufactured solution u(x, t) = e−5t(1−x)3 satisfies the boundary and initial conditions, and

it satisfies Equation 2.54 where

f(x, t) = −5e−5t(1 − x)3 − 6e−5t(1 − x) − 3e−5t(1 − x)2 (2.56)

In this case, we need to include functions in Sh that are nonzero at x0. We write (uh)k ∈ Sh the

approximation to u(x, tk) as

(uh)k = ck
0φ0 +

n
∑

i=1

ck
i φi (2.57)

where the functions {φi}
n
i=1 are the same continuous piecewise linear nodal basis functions described

in Equation 2.34, and φ0 is a continuous piecewise linear nodal basis function such that φ0(x0) = 1,

and φ0(xi) = 0 for i 6= 0. Because we are using nodal basis functions, the value of (uh)k at node xi

of the grid is simply ck
i . Therefore, in order to satisfy the boundary condition at x = 0, we must

have ck
0 = e−5tk . The quantity ck

0 is known at time level tk, so it is moved to the right hand side of

the equation and there remain n unknown coefficients in the problem.

Starting with the semi-discrete weak form of the problem in Equation 2.54,

1

∆t

∫ 1

0
ukv dx − uk

xv

∣

∣

∣

∣

1

0
+

∫ 1

0
uk

xvx dx +

∫ 1

0
uk

xv dx =

∫ 1

0
f(x, tk)v dx+

1

∆t

∫ 1

0
uk−1v dx (2.58)

we write the fully discrete weak form, replacing (uh)k according to Equation 2.57. Since the test

functions vh ∈ {φi}
n
i=1 are zero on the boundary, the boundary terms disappear, giving

1

∆t

n
∑

i=1

ck
i

∫ 1

0
φiv

h dx +
e−5tk

∆t

∫ 1

0
φ0v

h dx +
n
∑

i=1

ck
i

∫ 1

0
(φi)xvh

x dx

+ e−5tk
∫ 1

0
(φ0)xvh

x dx +

n
∑

i=1

ck
i

∫ 1

0
(φi)xvh dx + e−5tk

∫ 1

0
(φ0)xvh dx

=

∫ 1

0
f(x, tk)v

h dx +
1

∆t

∫ 1

0
(uh)k−1vh dx

(2.59)

All of the terms involving φ0 are independent of the unknown coefficients, {ci}
n
i=1, and so they are
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moved to the right-hand side of the equation.

1

∆t

n
∑

i=1

ck
i

∫ 1

0
φiv

h dx +

n
∑

i=1

ck
i

∫ 1

0
(φi)xvh

x dx +

n
∑

i=1

ck
i

∫ 1

0
(φi)xvh dx

=

∫ 1

0
f(x, tk)v

h dx +
1

∆t

∫ 1

0
(uh)k−1vh dx −

e−5tk

∆t

∫ 1

0
φ0v

h dx

− e−5tk
∫ 1

0
(φ0)xvh

x dx − e−5tk
∫ 1

0
(φ0)xvh dx

(2.60)

Letting vh be each φi in Φ = {φi}
n
i=1 in turn gives the n×n linear system. The function φ0 is only

nonzero over the interval x ∈ [x0, x1]. Therefore, the terms involving φk
0 will be zero when vh 6= φ1.

So this boundary value is enforced by changing only the first entry of the column vector F from

Equation 2.25.

Applying the finite element code we developed to the problem, we analyze the error to verify that

the software computes the solution correctly. To test for convergence in space, we discretize the time

domain with ∆t = 10−6 for various choices of ∆x, and compute the error after a single time-step.

The error and convergence rates in the L2 norm are presented in Table 2.4, and the corresponding

figures measured in the H1 norm are displayed in Table 2.5. From the error data, we see that in

the L2 norm the solution has second-order convergence with respect to the spatial domain, and

that convergence is first-order in the H1 norm. These are the optimal rates that were predicted.

To verify convergence in the time domain, we fix ∆x = 10−4 and compute approximations to the

solution using various values of ∆t. The error of these approximate solutions and convergence in

the L2 norm can be found in Table 2.6. In the L2 norm we see that the convergence rate approaches

one, which is the optimal rate.
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Table 2.4: L2 Error of Finite Element Solution to Example Problem in Section 2.2.2 at
t = 1 Using ∆t = 10−5

∆x L2 Error Convergence Rate

0.25000 0.24792×10−3 –
0.12500 0.65878×10−4 1.91201
0.06250 0.16694×10−4 1.98047
0.03125 0.41501×10−5 2.00811

Table 2.5: H1 Error of Finite Element Solution to Example Problem in Section 2.2.2 at
t = 1 Using ∆t = 10−5

∆x H1 Error Convergence Rate

0.25000 0.17502×10−2 –
0.12500 0.85235×10−3 1.03800
0.06250 0.42245×10−3 1.01267
0.03125 0.21073×10−3 1.00338

Table 2.6: L2 Error of Finite Element Solution to Example Problem in Section 2.2.2 at
t = 1 Using ∆x = 10−4

∆t L2 Error Convergence Rate

0.1000 0.46431×10−3 –
0.0500 0.19299×10−3 1.26656
0.0250 0.87668×10−4 1.13840
0.0125 0.41777×10−4 1.06934
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CHAPTER 3

REDUCED-ORDER MODELING USING PROPER

ORTHOGONAL DECOMPOSITION

A wide variety of algorithms can be placed in the category of reduced order modeling (Gun-

zburger et al., 2007). In a broad sense, the idea behind model reduction is to compress the model

data to reduce the computational complexity of the algorithm. Typically, high-dimensional data

is compressed into a low-dimensional approximation, and this low-dimensional data is used for

computation rather than its high-dimensional counterpart. Techniques that fall under this general

description appear in many forms, with a wide range of practical applications. Because of this, it

is beneficial to state that this work is concerned specifically with using reduced order modeling as

a means of approximating the solution to a system of partial differential equations (PDEs) using

data from a snapshot set of particular solutions compressed through a technique called proper

orthogonal decomposition (POD). In the scope of this work, this is precisely what reduced order

modeling will be used to denote, and the resulting model will be referred to as the reduced model.

Computing the solution to partial differential equations using techniques such as finite element,

finite difference, or finite volume methods often proves to be computationally costly. That is, these

techniques require the solution of a linear or nonlinear system where there can easily be thousands

of degrees of freedom to compute at a single time-step. Clearly, there are many situations (such

as when it may be necessary to simulate a solution in real time, or, as in the application discussed

in this work, when analysis requires solutions corresponding to many sets of parameter values)

for which the use of such methods is computationally cost-prohibitive. Reduced order modeling

(ROM) aims to decrease the time required to accurately compute the solutions of these types of
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problems by compressing the problem data, effectively reducing the number of degrees of freedom

that must be computed at each time-step.

As the computational demands and complexity of these problems have increased, interest in

techniques for model order reduction has followed suit. Reduced order modeling first came to light

in the late 1970s and early 1980s in model reduction for structural analysis (Noor, 1981). The

value of such methods is immediately apparent, and reduced order techniques have been a fruitful

area of research. Reduced order models have been applied to a wide range of linear and nonlinear

problems, including circuitry (Bai, 2002),(Freund, 2000) and Navier-Stokes flow problems (Peterson,

1989),(Burkardt et al., 2006). Reduced order modeling has not surprisingly sparked a great deal

of mathematical analysis in creating and comparing new variations on reduced order modeling. As

scientific models continue to become more complex, reduced order numerical techniques continue

to comprise a valuable area of exploration. Early examples of model reduction made use of Taylor

basis polynomials, but, as will be discussed later, many different choices of basis functions have

been and continue to be considered for use in model reduction.

In this chapter, we will show how a reduced order model is constructed to approximate the

solution computed using a high-resolution numerical scheme (in this work, the finite element method

is chosen for spatial discretization). Then, a method for obtaining the basis functions that define the

model will be discussed, as well as the handling of inhomogeneous Dirichlet boundary conditions.

Once these ideas have been developed, computational examples involving some sample problems

are presented.

3.1 Construction of the Reduced-Order Model

If we denote the solution to a time-dependent PDE as u, then one can seek an approximation

to the true solution as:

ũ(~x, t) =

d
∑

i=1

ci(t)φi(~x) (3.1)

where {φi(~x)}d
i=1 is the set of basis functions. As discussed in chapter 2, {φi(~x)}dFEM

i=1 is typically

chosen to be a set of functions with compact support such as polynomials. However, if dFEM is

prohibitively large then one may seek a set of basis functions such that dROM ≪ dFEM . This is
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the typical setting for reduced order modeling. The challenge is to determine a small number of

basis functions that exhibit characteristics which the solution is expected to have.

In standard finite element approximation, the basis functions are selected to have compact

support. That is, the function has nonzero values only over a very specific (and relatively small)

section of the domain. This results in a linear system that is banded and thus has a computationally

advantageous structure. However, with the functions φi(~x) in the reduced basis, which are chosen

to be well-suited to the problem, no such claim can be made with regard to compact support. Each

function φi(~x) may be nonzero over the entire domain, which results in a dense linear system that

must be solved to compute the coefficients ci(t). At this point, it becomes apparent that reduced

order modeling can only be effective if dROM , the dimension of the reduced basis, is much less

than dFEM , the dimension of the standard finite element basis. For two linear systems of equal

dimension, a banded system can be solved with much lower complexity that a dense system. In

the reduced order model, this structure is sacrificed in the hopes that only a small number of basis

functions will be required for computation. The next section will discuss how the reduced basis is

generated.

3.1.1 Generating Snapshots

In order to create the reduced basis, it is necessary first to generate a collection of vectors called

a snapshot set, which will then be processed to remove redundant information to form the reduced

basis. Assume that the solution of the PDE is dependent on one or more parameters occurring in

the equation, the initial conditions, and/or the boundary conditions, and that these parameters

lie within a predictable range of values. The snapshot set consists of a collection of approximate

solutions to the partial differential equation, usually produced by solving the PDE using a full

numerical scheme. These “snapshots” are obtained by computing the numerical solution at several

time instants and using a variety of parameter values; the parameter values are intelligently sampled

from the given parameter space. If we use the finite element method with nodal basis functions to

generate these snapshots, then each snapshot is a vector of coefficients which are the nodal values

at a specific point and time. If dFEM = n, then these solutions can be viewed as column vectors
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si ∈ R
n, and so the snapshot set is given by:

S = {s1, s2, ..., sm} (3.2)

where m is the number of snapshots, and S ∈ R
n×m. Because snapshots must be generated using

various sets of parameter values and at various points in simulation time, m may be much larger

than n. Additionally, the columns of S will contain a great deal of redundant data.

Since the approximate solution of the reduced model is a linear combination of the vectors in

the reduced basis, which come from the snapshot set, any solution behavior that is not represented

in the snapshot set cannot be realized in the reduced model solution. In this way, the quality of the

reduced order model is dependent on the quality of the information contained in the snapshot set.

For this reason, the sets of parameter values used in snapshot generation must be chosen carefully.

A variety of methods can be employed to perform this parameter-space sampling, including uniform

sampling, Latin hypercube sampling (LHS), and sampling based on point sequences (i.e., the Halton

sequence and Hammersly sequence). In this work, LHS will be used to sample the parameter space.

3.1.2 Forming the Reduced Basis

Since the dimension of the reduced basis, dROM , must be small, it is necessary to eliminate

the redundancy contained in the m columns of S. This is essentially a data compression opera-

tion, and assorted methods have been used to do this, including centroidal Voronoi tesselations

(CVT) (Burkardt et al., 2007), proper orthogonal decomposition (POD) (Graham and Kevrekidis,

1996), and hybrid methods such as centroidal Voronoi orthogonal decomposition (CVOD) (Du and

Gunzburger, 2002). One method (and the one considered here) is to generate a proper orthogonal

decomposition of the snapshot set using the singular value decomposition (SVD).

Theorem 3.1.1 (Singular Value Decomposition) Let A ∈ R
n×m be an arbitrary matrix. Then

A = UΣV T (3.3)

with orthogonal matrices U ∈ R
m×m and V ∈ R

m×m, and Σ ∈ R
n×m a diagonal matrix with the

singular values on the diagonal. The singular values are non-negative and are ordered by magnitude,
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such that σ1,1 ≥ σ2,2 ≥ ... ≥ σn,n ≥ 0, where σi,j is the entry in row i and column j of Σ.

If ~ui is the ith column of U and ~vi is the ith column of V , then Ãi is a rank-one approximation to

A, where

Ãi = σi,i~ui(~vi)
T (3.4)

We define the best rank-p approximation to an n × m matrix, A, to be Âp such that

‖A − Âp‖
2
F ≤ ‖A − Ap‖

2
F ∀Ap ∈ R

n×m, rank(Ap) ≤ p (3.5)

where ‖·‖F denotes the Frobenius norm. It can be shown that the singular value decomposition

gives the best rank-p approximation to A,

Âp =

p
∑

i=1

Ãi (3.6)

Because of this property, we want to compute the singular value decomposition of the snapshot set

(the matrix S) and obtain a low-rank approximation to S. The rank of the approximation will be

the dimension of the reduced basis.

These properties of the SVD are important for application to reduced order modeling in several

ways. First, since the snapshots are the columns of S, this means that if S has k nonzero singular

values, then all of the information contained in the snapshots can be reproduced by taking linear

combinations of the first k columns of U . If S has k nonzero singular values, then the set of vectors

{~ui}
k
i=1 forms an orthonormal basis for the column space of S (or, equivalently, for the span of S).

A reduced basis of dimension k would be able to capture all of the solution behavior represented

in the snapshots. Again, it is clear that behavior not represented in the snapshot set cannot be

replicated using the reduced basis.

In general, S will have many nonzero singular values, and a reduced basis of dimension k will

be unacceptably large. So, typically, it is necessary to choose a subset of these vectors. However,

the magnitude of the singular values indicate the contribution of the corresponding column of U to

S. As mentioned previously, the singular values of S appear in descending order of magnitude in

the SVD. That is, the d singular values of largest magnitude are given by {σi,i}
d
i=1 and the column
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vectors {~ui}
d
i=1 are the d vectors of U with the greatest contribution to S.

We can represent the ratio of data from S that is captured by Ŝp, the rank-p approximation to

S by

‖Ŝp‖
2
F

‖S‖2
F

=
‖U Σ̂pV

T ‖2
F

‖UΣV T ‖2
F

(3.7)

where σ̂i,i = σi,i for i = 1 . . . p, and σ̂i,i = 0 for i > p. The Frobenius norm is invariant with respect

to multiplication by an orthogonal matrix; for an orthogonal matrix Q, ‖QA‖F = ‖A‖F . Since U

and V are orthogonal matrices, Equation 3.7 becomes

‖Σ̂p‖
2
F

‖Σ‖2
F

=

p
∑

i=0
σ2

i,i

n
∑

i=1
σ2

i,i

(3.8)

and the ratio of information that is missing from the rank p approximation is

ePOD =

n
∑

i=p+1
σ2

i,i

n
∑

i=1
σ2

i,i

(3.9)

It is valuable to note that this measure of relative error only takes into account the fact that the

information in the snapshot set has been compressed into a small number of vectors. In effect,

ePOD is only measuring the amount of information in the snapshot set, S, that is not represented

in the reduced basis of cardinality d. This emphasizes once more the importance of having a good

snapshot set. There is no hope of representing in the reduced model any data that is not present

in the snapshot set.

Assuming that the snapshot set contains sufficient data, this gives a method for determining

the number of basis functions to use in the reduced model to sufficiently approximate the snapshot

set. To obtain a relative error less than some tolerance δ, the number of basis functions, d, should

be the smallest integer such that
∑dROM

j=1 σ2
j

∑n
j=1 σ2

j

≤ 1 − δ (3.10)

where σj is the jth singular value of the snapshot set, dROM is the dimension of the reduced basis

and n is the dimension of the diagonal singular value matrix Σ.
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Based on these features of the SVD, an appropriate choice can be made for the vectors in the

reduced basis. The dimension of the reduced basis, dROM , is chosen either to satisfy Equation 3.10,

or to optimize the balance between accuracy and computational effort. The singular values of the

snapshot set typically exhibit characteristics of exponential decay. So, using an increasing number

of basis vectors improves accuracy only to a point, but the marginal complexity of increasing the

size of the reduced basis worsens with each additional basis vector. Typically, the balance between

accuracy and computational complexity occurs where the plot of the magnitude of the singular

values shifts from a regime of rapid decrease to a flattened regime that asymptotically approaches

zero, i.e., at the “elbow” of the plot of singular value magnitude vs. singular value index.

For a reduced basis of cardinality dROM the goal is to select vectors so that the reduced basis

contains as much information from the snapshot set that can be contained in dROM vectors. This

is accomplished by choosing the first d left singular vectors. That is, we choose the reduced basis

to be the POD subspace

ΦROM = {φi}
dROM

i=1 = {~ui}
dROM

i=1 (3.11)

By choosing the reduced basis in this way, we ensure that the reduced basis contains the maximum

amount of information about the column space of S that can be represented in a set of vectors of

cardinality dROM .

3.1.3 Enforcement of Inhomogeneous Boundary and Initial Conditions Using

Reduced Order Modeling

It is still necessary to address the enforcement of inhomogeneous boundary and initial condi-

tions in the reduced model. In general, it is necessary to project the initial state of the system into

span(ΦROM ), calculating the appropriate initial coefficients, c0
i , i = 1 . . . dROM . A QR decompo-

sition can be performed to find the best approximation (in the least-squares sense) to u(x, t0) in

span(ΦROM ). In the case of u(x, t0) = 0, the projection is trivial, and c0
i = 0, i = 1 . . . dROM .

A problem with homogeneous Dirichlet boundary conditions presents a simple case for reduced

order modeling; all of the snapshots will satisfy homogeneous boundary conditions. Thus, each of

the basis functions will also satisfy the homogeneous boundary conditions, and any linear combi-
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nation of the basis vectors will satisfy those same conditions as well. However, in this work, we

wish to consider systems with inhomogeneous Dirichlet boundary conditions. In the homogeneous

case, all of the snapshots (and, consequently, the basis vectors) satisfy the homogeneous boundary

constraints. Clearly, in the homogeneous case, any linear combination of the basis vectors will also

satisfy the homogeneous boundary conditions. However, in the inhomogeneous case, if snaphsots

and basis vectors are computed as in the homogeneous case, the basis vectors will contain some

inhomogeneous data at the boundary. An arbitrary linear combination of these vectors cannot be

guaranteed to satisfy the boundary conditions of the original problem.

Gunzburger et al. (2007) describes ways in which boundary conditions may be handled in a

ROM setting. Here the first method from that work is used, which essentially involves separating

the basis functions from the boundary data. Equation 3.1 may be written at time level k as

ũk =

dROM
∑

i=1

ck
i φi + gk (3.12)

where {φi}
dROM

i=1 are basis functions that satisfy homogeneous boundary conditions, and gk is a

function (or a linear combination of functions) satisfying the boundary conditions at time tk. The

basis functions {φi}
dROM

i=1 are formed by first ensuring that each snapshot, sj ∈ S is modified to

satisfy homogeneous boundary conditions. Then, the basis functions are generated by computing

the SVD of the modified snapshot set, so that the basis functions also satisfy homogeneous boundary

conditions. Clearly, for the homogeneous case, gk = 0, and the problem is reduced to the previous

homogeneous problem. For the inhomogeneous case, gk must be handled differently.

For an example, return to Equation 2.54, which was a weak form of the advection dispersion

equation.

1

∆t

∫ 1

0
ukv dx − uk

xv

∣

∣

∣

∣

1

0
+

∫ 1

0
uk

xvx dx +

∫ 1

0
uk

xv dx ≈

∫ 1

0
f(x, tk)v dx+

1

∆t

∫ 1

0
uk−1v dx (3.13)

By substituting Equation 3.12 into this weak problem we obtain the fully discreate weak form of
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the problem

1

∆t

dROM
∑

j=1

ck
j

∫ 1

0
φjv dx +

1

∆t

∫ 1

0
gkv dx −

1

∆t

dROM
∑

j=1

ck−1
j

∫ 1

0
φjv dx −

1

∆t

∫ 1

0
gk−1v dx

+

dROM
∑

j=1

ck
j

∫ 1

0
(φj)xvx dx +

∫ 1

0
gk
xvx dx +

dROM
∑

j=1

ck
j

∫ 1

0
(φj)xv dx +

∫ 1

0
gk
xv dx

≈

∫ 1

0
fkv dx

(3.14)

Once again, the terms involving unknowns can be isolated on the left hand side of the equation,

and we choose v ∈ {φi}
dROM

i=1 .

1

∆t

dROM
∑

j=1

ck
j

∫ 1

0
φjφi dx +

dROM
∑

j=1

ck
j

∫ 1

0
(φj)x(φi)x dx +

dROM
∑

j=1

ck
j

∫ 1

0
(φj)xφi dx

≈

∫ 1

0
fkφi dx +

1

∆t

dROM
∑

j=1

ck−1
j

∫ 1

0
φjφi dx −

1

∆t

∫ 1

0
gkφi dx

+
1

∆t

∫ 1

0
gk−1φi dx −

∫ 1

0
gk
x(φi)x dx −

∫ 1

0
gk
xφi dx

(3.15)

for i = 1 . . . dROM . The left-hand side of Equation 3.15 is exactly the same as the homogeneous

case. Moving from the homogeneous case to the inhomogeneous case has no impact on the left-hand

side of the equation, but creates additional terms on the right-hand side.

In order to implement this enforcement of the inhomogeneous Dirichlet boundary conditions,

we need only to specify a choice of gk. There may be any number of choices for gk that satisfy

those conditions. For computational simplicity in one dimension, we choose

gk = ck
0φ0 + ck

n+1φn+1 (3.16)

where φ0 and φn+1 are nodal basis functions associated with the nodes at the left-hand and right-

hand boundaries, respectively. The nodal basis functions are described in detail in Chapter 2.

Thus, ck
0 and ck

n+1 must be equal to the left- and right-hand boundary values (respectively), which

are given.
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3.2 Computational Example

We have developed a code to implement the reduced order model. We use our previous finite

element code (discussed in Chapter 2) to generate snapshots, and use MATLAB to perform the

singular value decomposition of the snapshot set. The basis vectors are an input to the reduced

order software, which computes the reduced model as desribed previously in this chapter. All

computations are performed in double precision arithmetic. We provide an example to show how

the reduced model is applied to a problem, and to verify that the output of our reduced model

software agrees with the output of our finite element software which was previously tested.

The procedure of reduced order modeling outlined in the previous sections is demonstrated here

on our advection-dispersion example, where we have now incorporated a dispersion coefficient, ǫ,

and an advection coefficient, ν.

∂u

∂t
− ǫ

∂2u

∂x2 + ν
∂u

∂x
= 0 0 < x < 5, t > 0 (3.17)

u(x, 0) = 0 (3.18)

u(0, t) = e−5t u(5, t) = 0 (3.19)

(3.20)

This problem has a homogeneous initial state, and an inhomogeneous Dirichlet boundary condition.

The boundary at x = 0 is the source of input to the system, where the input decays quickly as time

passes. The solution depends upon the parameters of the problem, ǫ and ν.

We wish to construct a reduced model to solve this problem. To do so requires a high-resolution

scheme to generate snapshots, and here we will use the finite element method with piecewise linear

polynomial approximation for spatial discretization, and a first-order backward difference scheme

to discretize the time domain. It is necessary to run several finite element simulations for different

choices of values for ǫ and ν. For this example, let us assume ǫ ∈ [0.1, 1] and ν ∈ [0.5, 1.5], and that

both parameters are expected to be uniformly distributed in those ranges. Using Latin hypercube

sampling, three sets of parameters distributed throughout the given ranges are chosen for snapshot
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Figure 3.1: Plot of the magnitude of the first 50 singular values from the example snapshot set.
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(3.21)

Each simulation is run from t = 0 to t = 5 using ∆t = 0.001 and ∆x = 0.01. 200 snapshots are

generated during each simulation, at time levels corresponding to t = 0.025k for an integer k. Thus,

the snapshot set is populated with 600 snapshots generated over three runs of the full simulation.

The data in the snapshot set was compressed using the SVD to determine the optimal modes

to comprise a basis for the reduced model. The first 50 singular values of the snapshot set are

displayed in Figure 3.1. The plot graphically shows the rapid decrease in magnitude of the first

several singular values. This indicates that the vast majority of information from the column

space of the snapshot set is compressed into the first few left singular vectors. To obtain a more

mathematical measure of the goodness of the data compression, the value ePOD from Equation

3.9 is computed for POD bases for this data of different cardinality, and presented in Table 3.1.
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Table 3.1: Percentage of information from example snapshot set that is not represented
in POD bases

Dimension of POD Basis ePOD

1 64.988%

2 38.995%

3 22.223%

4 12.319%

5 6.7120%

6 3.6740%

7 2.0270%

8 1.1450%

Nearly 99 percent of the data from the column space of the snapshot set is compressed into the

first eight left singular vectors. If the snapshot set contains enough information to describe the

solution, then the reduced model should be effective using eight basis vectors. The behavior of the

first nine modes is shown in Figure 3.2, each with the corresponding singular value.

To solve a problem such as this using the reduced model , we need the weak form of the problem.

The first-order backward difference (Equation 2.47) is used to discretize the time derivative, just as

was done in the finite element model (Section 2.1.6). Substituting this approximation into Equation

3.17 gives the semi-discrete form of the problem:

uk − uk−1

∆t
− ǫuk

xx + νuk
x ≈ fk (3.22)

where superscripts denote the time level and subscripts denote derivatives. Multiplying both sides

by a test function, v(x) and integrating with respect to x (using integration by parts on the uxx

term) yields the semi-discrete weak form of the problem.

1

∆t

∫ 5

0
ukv dx −

1

∆t

∫ 5

0
uk−1v dx − ǫuk

xv

∣

∣

∣

∣

5

0
+ ǫ

∫ 5

0
uk

xvx dx + ν

∫ 5

0
uk

xv dx ≈

∫ 5

0
fkv dx (3.23)

Choosing vh ∈ H1
0 (that is, functions that have at least one weak derivative on [0, 5] and are zero
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Figure 3.2: Plot of the first nine basis vectors from the example snapshot set.
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at the boundary) implies that uk
xv

∣

∣

∣

∣

5

0
= 0.

At this point, Equation 3.12 can be substituted for u in Equation 3.23 to obtain the fully

discrete weak form, recalling that by Equation 3.16, our choice for this problem is gk = e−5tkφ0.

1

∆t

dROM
∑

j=1

ck
j

∫ 5

0
φjv

h dx + ǫ

dROM
∑

j=1

ck
j

∫ 5

0
(φj)xvh

x dx + ν

dROM
∑

j=1

ck
j

∫ 5

0
(φj)xvh dx

≈

∫ 5

0
fkvh dx +

1

∆t

∫ 5

0
(uk−1)hvh dx −

e−5tk

∆t

∫ 5

0
φ0v

h dx

− ǫe−5tk
∫ 5

0
(φ0)xvh

x dx − νe−5tk
∫ 5

0
(φ0)xvh dx

(3.24)

If we let vh be each vector in {φi}
dROM

i=1 , in turn, then we have dROM equations in dROM unknowns

(the coefficients, cn
i , that define the approximate solution, ũk). We will compare reduced order

models using dROM = 2, dROM = 4, and dROM = 8.

We wish to apply the reduced model to problems that have parameter values different from

those used to generate the snapshots, but which lie in the sampled range. Let us choose parameter

sets p1 : (ǫ = 0.28000, ν = 0.94379) and p2 : (ǫ = 0.66368, ν = 1.10941). Both sets of parameters are

within the specified range. We use our software to implement the reduced model to approximate

the solution of the problem at t = 4 with both sets of parameters. The approximate solutions are

compared to the solution obtained from a finite element approximation of the problem with the same

parameter values. Bounds are available for the error of the finite element solution compared to the

exact solution. Such bounds are not available for the reduced model, however, the reduced model

is essentially an approximation of the finite element (high-resolution) solution. So, we analyze the

error of the reduced model by comparing it to the finite element approximation. The finite element

approximations at t = 4 using parameter sets p1 and p2 are plotted along with the corresponding

reduced order approximations using dROM = 2, 4, 8 in Figures 3.3 (for parameter set p1) and 3.4 (for

parameter set p2). These plots clearly show that as dROM increases, the reduced order model has

increasing agreement with the finite element model. This is exactly what was predicted. However,

it is helpful to analyze the agreement between the models numerically as well as visually. Both

the finite element approximation and the reduced model approximation are available as vectors of

discrete function values associated with each node. A measure of relative error in the L2 norm is
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Figure 3.3: Plot of the Finite Element Approximation and Reduced Order Approximations
at t = 4 Using Parameter Set p1.

Figure 3.4: Plot of the Finite Element Approximation and Reduced Order Approximations
at t = 4 Using Parameter Set p2.
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Table 3.2: Relative Error of Reduced Model Approximations in Example Problem

Relative Error (EROM )

dROM p1 p2

2 80.420% 82.233%

4 20.119% 17.396%

8 2.0380% 3.0321%

computed as

EROM =
‖uh

FEM − uh
ROM‖0

‖uh
FEM‖0

(3.25)

The error figures for reduced order models using bases of cardinality 2, 4, and 8 for problems

specified using p1 and p2 are presented in Table 3.2. The error figures show that the reduced model

approximation approaches the finite element approximation as the model dimension (d) increases.

As expected, we also see that the error between the finite element approximation and the reduced

model approximation is reduced drastically using only a relatively small number of basis vectors.

This simple example illustrates the effectiveness of ROM.
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CHAPTER 4

TRANSPORT OF REACTIVE SPECIES

In this work, we consider a column experiment in which water flows through a tube that contains

some porous material. This porous material may be either a granular solid where water may flow

through the channels between particles, or a fractured solid where the fractures connect to form

channels through which water may flow. A chemical tracer is injected into the tube at the end

where the water is flowing in (inflow). In a laboratory experiment, the observed concentration of the

tracer at the opposite end of the tube (outflow) is recorded over time. A plot of the concentration

of the tracer at the outflow end of the tube versus time is called a breakthrough curve. Clearly,

the observed values of the tracer at the outflow end of the column (and, too, the corresponding

breakthrough curve) must be determined by the physical processes acting on the tracer while it is in

the column. Hydrological theory gives an idea of the physical processes that occur in the column.

However, determining a predictive model from observed experimental data involves determining

the values of uncertain parameters that govern the physical processes.

In this chapter, the physical processes governing the flow in the column experiment will be

described, and then we will use those processes to mathematically describe the problem of interest.

Once the mathematical model is developed, we will discuss some common methods for determining

parameter values, and provide motivation for applying reduced-order modeling to this problem.

4.1 Physical Model

In mathematically describing the transport of a tracer through an aquifer, the physical processes

that must be considered are advection and dispersion. Advection is the transport of the tracer by
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means of the water flow through the aquifer. In the column experiment described above, a tracer is

injected into the water at the point of inflow; the tracer will be carried through the column by the

flow of the water moving through the column. If there were no other forces in the system, the rate

at which the tracer would travel through the pore space (the spaces between solid material through

which liquid may flow) in the porous material would be the same as the rate for water. The flow

of water through the porous material is described by Darcy’s Law.

Molecular diffusion is the action of molecules moving from areas of higher concentration to areas

of lower concentration, and is described by Fick’s Law. Mechanical dispersion is the separation

of molecules due to the tortuosity of the pore space. Because of the variance in size of the pores

within the column and the twisting path that fluid particles must travel, the pore velocity will vary.

This causes molecules that entered the system together to become separated within the system. It

is difficult to specifically account for this process since the specific pore velocity of each pore within

the column is not known. This difficulty is removed by making the assumption that mechanical

dispersion is “Fickian.” That is to say, by assuming that mechanical dispersion behaves according

to Fick’s Law, then only one “Fickian” term is needed in order to account for both mechanical

dispersion and molecular diffusion. If the tracer is acted upon only by the effects of diffusion and

dispersion, the tracer molecules will spread in a Gaussian pattern.

Combining Fick’s Law and Darcy’s Law with the Law of Mass Balance yields the advection-

dispersion equation. In one spatial dimension, the advection-dispersion equation is

∂C

∂t
= ǫ

∂2C

∂x2 − ν
∂C

∂x
(4.1)

where C(x, t) gives the concentration of the tracer at x at time t. ν is the seepage velocity in the

aquifer and ǫ is the dispersion coefficient.

The equation can be modified to account for reactions by including additional terms.

∂C

∂t
= ǫ

∂2C

∂x2 − ν
∂C

∂x
+

n
∑

i=1

Ri (4.2)

where each Ri is a term describing the impact of the ith reaction on the concentration of the tracer.

For first-order (linear) reactions, Ri is the concentration, Ci, of the species upon which the reaction
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depends, multiplied by a reaction coefficient, ki.

n
∑

i=1

Ri =
n
∑

i=1

kiCi (4.3)

4.2 Mathematical Model

We are now able to describe the mathematical system that we wish to study. Consider a

column experiment in a tube that is 150 cm in length with a cross section that has an area equal

to 1 cm2. Some amount of a tracer, species S1, is injected into the material at location x = 0. The

concentration of species S1 at location x and time t is given by C1(x, t). Initially, there is no S1

in the column. The amount of S1 that is injected at time t is described by e−5t. The molecular

diffusion and mechanical dispersion of the tracer within the column are described by a Fickian

diffusion term with the dispersion coefficeint, ǫ. The tracer is subject also to first order decay, with

decay coefficient k1. We also consider three additional species, S2, S3, S4, that are not present in

the column at the beginning of the simulation and which are not injected into the column. Rather,

S2 is created from a reaction involving species S1, with a reaction coefficient α2,1. Species S2 is

also affected by first-order decay, with decay coefficient k2. Both S3 and S4 are produced from

reactions involving S1 and S2, with reaction coefficients α3,1, α3,2, α4,1, α4,2. Species S3 and S4 do

not decay. Any solute transported to the outflow end of the column (x = 150) exits the column

and disappears.

We use the form of Equation 4.2 to write mathematical models for C1, C2, C3, C4, the functions

describing the concentration of species S1, S2, S3, S4, respectively. The concentration of the four

species are described by the following system of uncoupled linear time-dependent equations:

∂C1

∂t
= ǫ

∂2C1

∂x2 − ν
∂C1

∂x
− k1C1 (4.4)

∂C2

∂t
= ǫ

∂2C2

∂x2 − ν
∂C2

∂x
− k2C2 + α2,1C1 (4.5)

∂C3

∂t
= ǫ

∂2C3

∂x2 − ν
∂C3

∂x
+ α3,1C1 + α3,2C2 (4.6)

∂C4

∂t
= ǫ

∂2C4

∂x2 − ν
∂C4

∂x
+ α4,1C1 + α4,2C2 (4.7)
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on the domain

0 < x < 150, t > 0 (4.8)

subject to initial and boundary conditions

C1(x, 0) = C2(x, 0) = C3(x, 0) = C4(x, 0) = 0

C1(0, t) = e−5t

C2(0, t) = C3(0, t) = C4(0, t) = 0

C1(150, t) = C2(150, t) = C3(150, t) = C4(150, t) = 0

(4.9)

The values of the parameters in the Equations 4.4 through 4.7 will be discussed in greater detail

in Section 4.4.

4.3 Uncertainty and Parameter Estimation

In the column experiment model described above, there is uncertainty associated with each

of the parameters in the system of equations. That is, the value of the parameters in the model

(e.g. the parameters in Equations 4.4 through 4.7) are not known, though there is usually a region

in which the parameter values are expected to lie. The values of these parameters are needed in

order to specify a predictive model, but they are unknown. The only available data come from the

column experiment, where we know only the controlled variables (the initial state of the system and

the injected tracer) and the observed values (tracer concentration at the outflow end of the column

over time). The objective of parameter estimation is to determine the parameter values that cause

the predictive model to reproduce the observed values. In other words, parameter estimation seeks

to find parameters such that the breakthrough curve of the predictive model matches the observed

breakthrough curve from the column experiment.

A problem which seeks model parameters that satisfy observed data, such as the parameter

estimation problem described above, is called an inverse problem. Monte-Carlo (MC) methods

(Aggarwal and Carrayrou, 2006), (Aggarwal et al., 2007) and Genetic Algorithms (GA) (Massoudieh

et al., 2008), (Majdalani et al., 2009) are techniques that have been successfully applied to parameter
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estimation. Both techniques search for the optimal parameters by exploring the parameter space

and analyzing the output of the forward model. One similarity between these methods is that the

forward model must be solved repeatedly for a variety of sets of parameter values.

Typically, the forward model will have to be evaluated many times (perhaps thousands) in

order to estimate parameters using GA or MC. This procedure can be very costly, depending on

the computational complexity of evaluating the forward model. Since the parameter estimation

procedure requires many solutions of the forward problem on a specific domain for many choices of

parameter values in a predictable range, this problem is an ideal candidate for the application of

reduced order modeling. By replacing the high-resolution model (e.g., finite element) used to solve

the forward model with a reduced model, the complexity of each iteration can be decreased.

In order to construct a reduced order model, it is necessary to compute several full-order so-

lutions to generate snapshots, and so a large number of solutions from the reduced order model

must be required in order to justify the overhead cost of snapshot generation. It is clear that pa-

rameter estimation using MC or GA requires enough realizations of the solution that this up-front

pre-processing cost is justified. Over the thousands of iterations required by these parameter esti-

mation techniques, even a modest decrease in computational time per iteration by using a reduced

model will be significant.

The goal of this work is to present reduced order modeling as a viable means to decrease the

computational cost of parameter estimation by means such as MC and GA. To accomplish this, the

high-order solution to the forward problem (i.e., the problem described by Equations 4.4 through

4.9) can be replaced by a low-order approximation (the reduced model) to reduce computational

complexity while maintaining an acceptable level of accuracy.

4.4 Parameter Values

In order to make the problem of interest from Section 4.2 to be similar to a real-world problem,

we wish to choose realistic values of the parameters and their respective uncertainty ranges. Clearly,

the seepage velocity, ν is closely related to the velocity at which water is fed into the column. While

the velocity may change drastically from experiment to experiment, it is one of the most certain
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Table 4.1: Parameters and Uncertainty Intervals

Parameter Meaning Median Value Uncertainty Range

ν Seepage Velocity 5 cm/min ± 10% (4.5, 5.5)

ǫ Dispersion Coefficient 5 cm2/min ± 99% (5.0×10−2, 10)

–Reaction Rates–

k1 S1 Decay 5×10−3 min−1 ± 50% (2.5×10−3, 7.5×10−3)

k2 S2 Decay 4×10−3 min−1 ± 50% (2.0×10−3, 6.0×10−3)

α2,1 S1 → S2 6×10−4 min−1 ± 50% (3.0×10−4, 9.0×10−4)

α3,1 S1 → S3 4×10−4 min−1 ± 50% (2.0×10−4, 6.0×10−4)

α4,1 S1 → S4 3×10−4 min−1 ± 50% (1.5×10−4, 4.5×10−4)

α3,2 S2 → S3 5×10−4 min−1 ± 50% (2.5×10−4, 7.5×10−4)

α4,2 S2 → S4 6×10−4 min−1 ± 50% (3.0×10−4, 9.0×10−4)

parameters for a given experiment, since it can be easily controlled. Thus, the median value of

ν is not terribly important, as long as the velocity is not so high that the contaminant is flushed

out of the column immediately. Since the inflow velocity is well-controlled and is closely related to

the seepage velocity, we allow the seepage velocity an uncertainty of only ±10%. The dispersion

coefficient, ǫ, is a much more uncertain parameter. It may vary widely based on characteristics of

the aquifer (Gelhar et al., 1992). We allow the dispersion coefficient an uncertainty of ±99%, which

allows the dispersion coefficient to vary several orders of magnitude.

Hornberger and Wiberg (2005) discusses reaction rates from Greenwood (1963) in describing

the dehydration of Talc. The system of reactions in the problem of interest is similar to the reactive

processes studied in those works. Therefore, we choose reaction rates that are similar (in order

of magnitude) to those discussed by Hornberger and Wiberg (2005). There is a fair amount of

uncertainty in reaction rates, as they may vary due to changes in factors such as temperature or

pressure, so we allow for uncertainty of ±50% in the reaction rates. Values for the parameters and

uncertainty ranges that we will be using in this work are presented in Table 4.1.
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, we wish to demonstrate the application of reduced order modeling to the system of

equations described in Section 4.2. First, we will discuss generating snapshots and basis vectors for

the problem of interest. Then, we will analyze the effectiveness of the reduced model by comparing

its approximations to finite element approximations for a number of sets of test parameters. We

will also highlight again the effects of the goodness of the snapshot set on the reduced model.

5.1 Generating Snapshots

The first step in applying reduced order modeling to the problem of interest is to generate

snapshots using a high-dimensional numerical scheme. We use the finite element code discussed

in Chapter 2 to generate snapshots. We assume that we will wish to use the reduced model for

problems with parameters distributed uniformly throughout the uncertainty intervals. To sample

the nine-dimensional parameter space, we employ a Latin hypercube sampling algorithm (McKay

et al., 1979). This algorithm generates n values of each parameter by dividing the parameter space

for that parameter into n equally probable intervals, and randomly choosing a value from each

interval. This process is repeated for each parameter, and values for all parameters are randomly

ordered to form parameter sets. This method ensures that the space is sampled in such a way that

random values are generated, but we can be sure that the samples include values from all portions

of the domain. Using LHS, ten sets of parameters are generated to sample the parameter space of

all nine parameters.

For each of the ten parameter sets, we solve the system using the finite element method with
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∆x = 0.1, ∆t = 0.001 from t = 0 to t = 50 min. With the given parameter ranges of ν and ǫ,

all of the contaminant will be transported out of the domain before t = 50, so there is no reason

to continue the simulation beyond t = 50. The spatial discretization produces 1499 unknown

coefficients that must be determined for each equation at each time step. Additionally, let us recall

that the convergence of the finite element scheme we are using is O((∆x)2) in space and O(∆t)

in time. Because of this, it makes sense to choose (∆x)2 ≈ ∆t in computing snapshots as well

as in simulating test cases. In snapshot generation, using a smaller timestep does not create any

difficulties, but we also don’t expect much benefit from the smaller timestep (while ∆x remains

unchanged). For the test cases in Section 5.2, ∆t is increased such that (∆x)2 ≈ ∆t.

Since the input to the system comes from the boundary at very small t, we want to sample

more snapshots when t is small, to ensure that the nonzero boundary data is not lost. Additionally,

after t = 43, the contaminant should all be flushed away, so we do not need to take many snapshots

with t > 43. So, for each equation, we write ten snapshots during the first minute of simulation

time, six snapshots per simulation minute from t = 2 to t = 43, and two snapshots per simulation

minute for t > 43. This results in 366 snapshots per equation for each of the ten parameter sets.

The singular value decomposition is used to analyze the data from the snapshot set for each

equation, as discussed in Section 3.1.2. The curve of the magnitude of the singular values for each

of the four snapshot sets is plotted in Figure 5.1. We compute ePOD for POD bases of cardinality

4,8, and 16 for each of the four snapshot sets (Table 5.1). We see that for each of the snapshot sets,

a POD basis of cardinality 4 only captures about 50% of the information from the snapshot set,

while a POD basis of cardinality 16 captures approximately 85% − 92% of the snapshot data. We

can expect that if the snapshots are collected well (i.e., they contain most of the information about

the solution), then we should be able to recover about 90% of the accuracy of the finite-element

approximations using a reduced model with 16 basis vectors. From Figure 5.1 we can see that this

corresponds to the “elbow” bend in the singular value curves.

The data in Table 5.1 corresponds to n = 10 parameter sets sampled from the parameter space.

However, different values of n change the information in the basis vectors. For instance, Table 5.2

gives the values of ePOD for POD bases of cardinality 4, 8, and 16 from a snapshot set generated

using n = 5 sampled parameter sets. Comparing these figures with the case where n = 10, we see
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Figure 5.1: Singular Values of the Snaphsot Sets for 4 Equations from Section 5.2

Table 5.1: Percentage of information from snaphsot sets that is not represented in POD
bases in Section 5.2

Dimension of ePOD

POD basis Eq 1 Eq 2 Eq 3 Eq 4

4 52.972% 44.110% 51.007% 49.625%

8 34.071% 23.469% 30.258% 28.628%

16 14.225% 8.0166% 11.816% 10.846%
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Table 5.2: Percentage of information from snaphsot sets that is not represented in POD
bases with snapshot set using 5 parameter set samples

Dimension of ePOD

POD basis Eq 1 Eq 2 Eq 3 Eq 4

4 46.279% 36.422% 38.335% 39.107%

8 25.010% 15.897% 17.182% 17.570%

16 5.9386% 3.2670% 3.6172% 3.7605%

Table 5.3: Percentage of information from snaphsot sets that is not represented in POD
bases with snapshot set using 20 parameter set samples

Dimension of ePOD

POD basis Eq 1 Eq 2 Eq 3 Eq 4

4 57.491% 60.062% 58.781% 60.809%

8 40.476% 42.405% 41.442% 43.198%

16 22.456% 23.244% 22.610% 23.553%

that for POD bases of equal dimension, the basis captures a higher percentage of the data from

the snapshot set in the case of n = 5. However, the snapshot set also contains less information in

the case of n = 5. In Table 5.3, we show the corresponding values of ePOD for POD bases of a

snapshot set corresponding to n = 20. In general, higher values of n have the advantage that the

snapshot set will contain more information, but smaller values of n have the advantage that thea

smaller POD basis is required to recapture the information from the snapshot set. Here we choose

n = 10 to provide a balance between these two advantages.

5.2 Test Problems

Here we show the results of applying the reduced model with bases of cardinality 4,8, and

16 to solve the problem with test parameter sets (p̂1, p̂2, p̂3, p̂4). We determine the error of the

reduced model by comparing it with the finite element model. All computations in this section were
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performed using our finite element code and reduced model code. All computations are performed

in double precision arithmetic. All simulations in this section use ∆x = 0.1, ∆t = 0.01, which

satisfies (∆x)2 ≈ ∆t. For each test case, we show a plot of the concentration profile in space

in the middle of the simulation, at t = 25. We also show the breakthrough curve, a plot of the

concentration versus time at a fixed point in the spatial domain. In the physical problem described

in Section 4.1, the breakthrough curve would be observed at x = 150, the end of the column. In the

mathematical model, the boundary condition constrains the concentration at x = 150 to be zero,

so instead we plot the breakthrough curve at a point near the end of the column, at x = 148. We

also plot the absolute error of each reduced order approximation (with respect to the finite element

approximation) for the breakthrough curves as well as the spatial concentration curves. Relative

error for the approximations will be considered in Section 5.2.3.

5.2.1 Reduced model with parameter set used in snapshot generation

To start, let us examine the application of the reduced order model to a set of parameters,

p̂1, that were used in the generation of the snapshots. This is, in effect, a “best-case” scenario

for the reduced model, since the snapshot set included data about the solution to the specific

problem we are trying to solve with the reduced model. Another approach is to say that if the

basis vectors don’t contain data that can reproduce this solution, then there is no hope for a

reduced model using the current snapshot set. Figure 5.2 shows the finite element and reduced

order approximations to the solution at t = 25, with the absolute pointwise error (calculated as the

absolute difference between the reduced order approximation and the finite element approximation)

displayed in Figure 5.3. (The L2 error over the entire domain will be discussed in Section 5.2.3.)

The plot of the breakthrough curve at x = 148 for this parameter set, p̂1, is displayed in Figure

5.4, and the absolute error of the breakthrough curve can be found in Figure 5.5.

Clearly, the reduced model with dROM = 4 is not a good approximation, while the model with

dROM = 8 does much better, and the model with dROM = 16 looks to have excellent agreement

with the finite element approximation. This demonstrates that the reduced model can successfully

approximate the solution for a set of parameters that were used in snapshot generation. This is

good to know, but the reduced model is only useful if we can also approximate solutions for sets of
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Figure 5.2: Plot of the Finite Element Approximation and Reduced Order Approximations
at t = 25 Using Test Parameter Set p̂1.

48



Figure 5.3: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at t = 25 Using Test Parameter Set p̂1.
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Figure 5.4: Plot of the Finite Element Approximation and Reduced Order Approximations
at x = 148 Using Test Parameter Set p̂1.
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Figure 5.5: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at x = 148 Using Test Parameter Set p̂1.
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parameters which differ from those used to generate snapshots.

5.2.2 Reduced model with parameter sets not used in snapshot generation

Next, we want to test the ability of the reduced model to approximate solutions that were not

included in the snapshot set. We first choose a parameter set p̂2 to be the median values of all

parameters. This parameter set was not used in snapshot generation, but lies in the middle of

the parameter space of interest. The approximations of the concentration profile at t = 125 for

parameter set p̂1 is found in Figure 5.6, and the the approximations of the breakthrough curve at

x = 148 in Figure 5.8. The absolute error is displayed in Figures 5.7 and 5.9 respectively. These

results are analogous to those in the previous example, in Section 5.2.1. We see that dROM = 4

does not yield a good approximation, while dROM = 8 shows marked improvement, and dROM = 16

closely approximates the finite element approximation. We also observe that the absolute pointwise

error is higher for approximations using parameter set p̂2 than for p̂1.

We also want to test some other points in the parameter space for the problem to verify the

effectiveness of the reduced model. We use Latin Hypercube Sampling to generate two more sample

points in the parameter space, p̂3 and p̂4. Figure 5.10 and Figure 5.12 show the solution at t = 25

and the breakthrough curve at x = 148 for the problem with parameter set p̂3, with the respective

absolute error measurements displayed in Figures 5.11 and 5.13
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Figure 5.6: Plot of the Finite Element Approximation and Reduced Order Approximations
at t = 25 Using Test Parameter Set p̂2.
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Figure 5.7: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at t = 25 Using Test Parameter Set p̂2.
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Figure 5.8: Plot of the Finite Element Approximation and Reduced Order Approximations
at x = 148 Using Test Parameter Set p̂2.
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Figure 5.9: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at x = 148 Using Test Parameter Set p̂2.
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Figure 5.10: Plot of the Finite Element Approximation and Reduced Order Approxima-
tions at t = 25 Using Test Parameter Set p̂3.
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Figure 5.11: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at t = 25 Using Test Parameter Set p̂3.
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Figure 5.12: Plot of the Finite Element Approximation and Reduced Order Approxima-
tions at x = 148 Using Test Parameter Set p̂3.
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Figure 5.13: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at x = 148 Using Test Parameter Set p̂3.
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For parameter set p̂4, Figure 5.14 shows the plot of the concentration profile at t = 25 and Figure

5.15 shows the absolute error of the concentration profile approximation at t = 25. Figure 5.16

shows the breakthrough curve approximations at x = 148, and Figure 5.17 shows the absolute error

of those breakthrough curve approximations. The plots for the approximations with parameter sets

p̂3 and p̂4 show behavior consistent with that of the approximations with parameter set p̂2 in that

higher values of dROM have higher accuracy, as predicted. We also see that parameter set p̂3 is

associated with a larger error in the breakthrough curves of all four species and in the concentration

profile for species S1. In the breakthrough curve, we also see some loss of smoothness in the finite

element model near the concentration peak. For all cases, the breakthrough curves have larger

pointwise absolute errror than the concentration profile curves.
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Figure 5.14: Plot of the Finite Element Approximation and Reduced Order Approxima-
tions at t = 25 Using Test Parameter Set p̂4.
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Figure 5.15: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at t = 25 Using Test Parameter Set p̂4.
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Figure 5.16: Plot of the Finite Element Approximation and Reduced Order Approxima-
tions at x = 148 Using Test Parameter Set p̂4.
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Figure 5.17: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at x = 148 Using Test Parameter Set p̂4.
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Table 5.4: Relative Error of Reduced Order Approximations with dROM = 16 compared
to Finite Element Approximations of the Concentration Profile at t = 25

Test Parameter Set Eq 1 Eq 2 Eq 3 Eq 4

p̂1 2.3762% 2.4206% 3.8689% 3.0518%

p̂2 5.2911% 4.4190% 6.1660% 5.0255%

p̂3 22.7200% 6.0120% 7.4311% 7.0768%

p̂4 3.3867% 3.2038% 5.0800% 3.9479%

Table 5.5: Relative Error of Reduced Order Approximations with dROM = 16 compared
to Finite Element Approximations of the Breakthrough Curve at x = 148

Test Parameter Set Eq 1 Eq 2 Eq 3 Eq 4

p̂1 7.5117% 4.0890% 6.4885% 4.7395%

p̂2 7.7818% 4.9325% 7.2793% 5.9696%

p̂3 26.9486% 18.0388% 19.5829% 20.5215%

p̂4 8.0652% 4.0762% 6.5002% 4.6451%

5.2.3 Relative Error

From the figures presented in Sections 5.2.1 and 5.2.2, it is clear that dROM = 16 produces a

much more accurate approximation than dROM = 4 or dROM = 8. Also, it appears visually that the

reduced model with dROM = 16 approximates the finite element solution quite well, in a pointwise

sense. However, we want to numerically analyze how close these reduced order approximations are

to the finite element approximations. Table 5.4 shows the relative error of the concentration profile

at t = 25 for all four equations with each parameter set, using dROM = 16. Table 5.5 shows the

relative error of the breakthrough curves at x = 148. The relative error is calculated by

Erel =
‖uh

ROM − uh
FEM‖0

‖uh
FEM‖0

(5.1)

where ‖·‖0 denotes the standard L2 norm over the domain.
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For parameter sets p̂1, p̂2, and p̂4, the relative error figures for the concentration profiles and

the breakthrough curves of the reduced order approximation is less than 10%. We see also that the

reduced order model did not do as well at approximating the solution to parameter set p̂3, especially

for Equation 1. However, it appears that the finite element model also had some difficulty with that

set of parameters. Another characteristic worth noting is that the approximations using parameter

set p̂1 have less error than the other approximations. This is what we expect, since the parameter

set p̂1 was used to generate snapshots. Information about the solution with p̂1 is directly available

in the snapshot set, and so we expect to obtain a better approximation than we otherwise would.

5.3 An Illustration of the Importance of Snapshot Quality

To illustrate the importance of having a good set of snapshots, let us consider another example.

Let us generate snapshots as in Section 5.1, with only a slight modification. We will use the same

sampling of the parameter space, but choose to ignore the knowledge that a great deal of important

information happens when t is small. This time, we collect two snapshots per simulation minute

from t = 0 to t = 5. Then, for the remainder of the simulation time, we collect ten snapshots per

simulation minute. This results in 460 snapshots being collected for each equation per parameter

set. This is a larger quantity of snapshots than collected in Section 5.1. However, simply increasing

the number of snapshots does not necessarily mean that more valuable information is collected.

The singular value decomposition is used to process the information in the snapshot sets for

these four equations. The magnitude of the singular values for each snapshot set is shown in

Figure 5.18. The behavior of the singular values is what we would expect: we see smooth decay

of the magnitude of the singular values. We also calculate EPOD for bases of cardinality 4, 8, and

16. These figures are displayed in Table 5.6. Here, we see that a POD basis of cardinality 16

again captures 85%− 95% of the information contained in the snapshots. Recall, however, that as

previously mentioned, this measure only describes how well the POD basis describes the snapshot

set; EPOD gives no indication of how well the snapshot set describes the characteristics of the

solution.

Just as in Section 5.2.1, we want to test how well the reduced model can approximate the
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Figure 5.18: Singular Values of the Snaphsot Sets for 4 Equations from Section 5.3

Table 5.6: Percentage of information from snaphsot sets that is not represented in POD
bases in Section 5.3

Dimension of ePOD

POD basis Eq 1 Eq 2 Eq 3 Eq 4

4 60.473% 40.999% 48.474% 46.997%

8 38.372% 19.563% 26.738% 25.007%

16 14.642% 05.8758% 08.6719% 07.9193%
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solution using the POD bases, and we begin with a set of parameters, p̂1, that was used to generate

snapshots. Once again, this is a “best-case” scenario for the reduced model. If it cannot produce a

good approximation using p̂1, then it is not useful. We plot the approximations to the concentration

profile at t = 25 in Figure 5.19 and display the absolute error of those approximations in Figure

5.20. We also show the approximate breakthrough curves at x = 148 in Figure 5.21, and the

absolute error for the approximate breakthrough curves in Figure 5.22. From these figures, we

can see that the reduced order model does not do a good job of approximating the finite element

solution. Additionally, we see that the addition of more basis vectors does not do much to mitigate

the error. That is, the reduced order approximations with dROM = 16 contain nearly the same

amount of error as the reduced order approximations with dROM = 8. With a poorly chosen set

of snapshots, the reduced model may behave unpredictably (as in this example). This emphasizes

how effect that the snapshot set can have on the reduced model, and how crucial it is to have a

good snapshot set.
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Figure 5.19: Plot of the Finite Element Approximation and Reduced Order Approxima-
tions at t = 25 Using Test Parameter Set p̂1.
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Figure 5.20: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at t = 25 Using Test Parameter Set p̂1.
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Figure 5.21: Plot of the Finite Element Approximation and Reduced Order Approxima-
tions at x = 148 Using Test Parameter Set p̂1.
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Figure 5.22: Plot of the Absolute Error of the Finite Element Approximation and Reduced
Order Approximations at x = 148 Using Test Parameter Set p̂1.
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5.4 Conclusions and Future Work

The results that we have presented verify the software we have devloped, and demonstrate the

ability of the reduced order model to give a good approximation of the high-dimensional (finite

element) solutions in the test cases. The finite element solution, as used in Chapter 5, required

the computation of 1499 coefficients for each equation (per time step). The reduced order approx-

imations, however, only required the computation of dROM coefficients per equation per time step,

where dROM = 16 in the most accurate test case. There is some sacrifice of accuracy, as predicted,

but in general the agreement between the reduced order approximations and the finite element

solutions was very good.

For higher accuracy, it is possible to use more basis vectors (which increases the computational

cost), or to include more information in the snapshot set (which increases only the pre-processing

cost). Additionally, this work assumed all parameter values to be uniformly distributed throughout

the parameter space. With a better knowledge of the nature of the parameters, it may be possible

to produce better reduced models for this type of application. Moving forward, we wish to apply

the reduced order techniques discussed and demonstrated in this work, as well as our software, in

a parameter estimation setting, which was the motivation behind this work.
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