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ABSTRACT

Sustainability research of the environment depends on accurate land cover information over large ar-

eas. Even with the increased number of satellite systems and sensors acquiring data with improved

spectral, spatial, radiometric and temporal characteristics and the new data distribution policy,

most existing global land cover datasets were derived from a single-date multi-spectral remotely

sensed image using pixel-based classi�ers with low accuracy. To improve the accuracy, the bottle-

neck is how to develop accurate and e�ective image classi�cation techniques. By incorporating and

utilizing the spatial and multi-temporal information with multi-spectral information of remote sens-

ing images for land cover classi�cation, and considering their spatial and temporal interdependence,

I propose three deep network systems tailored for medium-resolution remote sensing data. With

a test site from the Florida Everglades area (with a size of 771 square kilometers), the proposed

new deep systems have achieved signi�cant improvements in the classi�cation accuracy over most

existing pixel-based classi�ers. For example, the proposed patch-based recurrent neural network

system, pixel-based recurrent neural network system and patch-based convolutional neural network

system achieve 97.21%, 87.65% and 89.26% classi�cation accuracy respectively while a pixel-based

single-image neural network system achieves only 64.74% classi�cation accuracy. By integrating

the proposed deep networks and the huge collection of medium-resolution remote sensing data, I

believe that much accurate land cover datasets can be produced over large areas.

xi



CHAPTER 1

INTRODUCTION

An ecosystem is a dynamic complex system consisting of the living community and the non-living

environment interacting as a functional unit that can vary greatly in size; the interactions are

fundamentally governed by interacting physical, chemical, and biological processes, which are in-

herently nonlinear in nature. Empowered by accumulated tools and machinery, human domination

over all other species(specially at land surface) has clearly established [53] and appears to be accel-

erating. Through the process, the distribution of resources among species has altered substantially,

mainly through land transformations. Although most changes to ecosystems tend to occur grad-

ually, signi�cant alternations and transformations have been observed at a variety of spatial and

temporal scales all around the world, which are largely driven by intensifying anthropogenic forces

over the past several decades in combination with the destructive force from severe storms and

geohazards [25]. Moreover, all scienti�c evidence clearly points to the fact that the impacts of

these direct and indirect drivers on global ecosystems are not uniformly distributed [61]. Given

widespread dissemination of the fact that a growing world population and the depletion of resources

are threatening human well-being, sustainability has become the cornerstone in present-day ecosys-

tem management [66].

The success of sustainable ecosystem management is contingent upon major advances in several

core research areas such as observation and monitoring of ecosystem changes underway and under-

standing of the causal linkage between the observed land surface changes and human-environmental

drivers [50, 83]. While ground surveys are largely limited by logistical constraints, remote sensing,

through the use of cameras and sensors mounted on aerospace-borne platforms, makes direct ob-

servations across large areas of the land surface, thus allowing land cover patterns to be mapped

in a timely and cost-e�ective manner. Both visual interpretation and computer-based digital clas-

si�cation can be used to extract information on land cover from a variety of remote sensing data,

such as aerial photographs, satellite imagery, thermal imagery, hyper-spectral imagery, radar and
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lidar datasets, which vary in spatial, spectral, radiometric, and temporal resolutions [42]. Digital

pattern classi�cation is generally preferred over visual interpretation for mapping land cover in

large areas. Given the importance of land cover information in global change research and envi-

ronmental sustainability assessment, there have been a number of e�orts to produce land cover

datasets at regional and global scales (e.g, [4, 34, 95, 26, 98, 15]). However, even with the increased

number of satellite systems and sensors acquiring data with improved spectral, spatial, radiometric

and temporal characteristics and the new data distribution policy, most of the existing land cover

datasets were derived from a pixel-based single-date multi-spectral remotely sensed imagery using

conventional or advanced pattern recognition techniques such as decision trees [49], random forest

(RF) [67, 81], neural network (NN) [57, 46] and support vector machine (SVM) [68, 40, 41, 99].

For example, a 30m resolution global land-cover dataset was produced using four di�erent pixel-

based classi�ers, namely, maximum likelihood classi�er (MLC), decision trees, RF and SVM, with

an overall accuracy of 64.9% [15]. While the result can be useful for certain applications, it may

not be su�cient to support applications that require more accurate land-cover information. The

real bottleneck is an accurate and e�ective image classi�cation technique which can incorporate

and utilize the full multi-spectral, multi-temporal and spatial information available instead of only

multi-spectral information to provide land cover datasets for remote sensing images.

Very recently, deep networks have been demonstrated to achieve signi�cant empirical improve-

ments in �elds like computer vision [85, 32, 55, 80, 70], natural language processing [16, 55, 72, 59,

43] and multi-modal research [45, 23, 30]. For example, in computer vision, deep networks have

surpassed human performance on the 1000-class ImageNet dataset [76], which contains 1.2 million

training images, 50,000 validation images, and 100,000 test images. Such e�ective techniques could

have signi�cant impacts on remote sensing image classi�cation. Accordingly, the remote sensing

community has also started to incorporate deep networks [13, 75, 101, 69, 38, 65, 78, 71, 54].

However, the majority of research using deep networks in the remote sensing community has been

focusing on high-resolution images classi�cation using deep convolutional neural networks (CNNs)

and change detection tasks using deep recurrent neural networks (RNNs). Classi�cation of high-

resolution images is similar to object recognition in computer vision, and remarkable improvements

achieved by deep networks in object recognition have also been shown in these applications. How-
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ever, in order to realize the full potential of deep networks for remote sensing, a large training

data set is needed [85, 32] and it may be di�cult to acquire a high-resolution data set for a very

large area. On the other hand, we have abundance of publicly available and free of charge remote

sensing data at medium-resolution such as Landsat imagery [90]. Consequently, I have targeted

medium-resolution Landsat imagery because of their overwhelming use as the primary data for

global environmental change research. The data acquired by Landsat programs provide the longest

continuous observations of Earth’s surface from space. In particular, the Landsat system o�ers a

rich archive of highly calibrated, multi-spectral data of global coverage that recently becomes avail-

able at no charge from the Earth Resources Observation and Science (EROS) Data Center of the

United States Geological Survey (USGS), which has become an invaluable resource for examining

natural and anthropogenic changes on Earth’s surface [90, 100]. Therefore, a system which utilizes

deep networks on the huge collection of medium-resolution remote sensing data would bene�t many

such applications. Additionally, we could also exploit the spatial, multi-spectral and multi-temporal

information together from the data. Furthermore, such a system would be able to provide more

reliable and e�cient classi�cation of remote sensing data over a large area.

This dissertation focuses on exploiting spatial and multi-temporal information with multi-

spectral information e�ciently using deep networks for improving land cover mapping. In order to

that, I have developed three deep network systems for land cover classi�cation of medium-resolution

satellite imagery. First deep network system is a six-layer deep patch-based CNN system, which is

developed considering the spatial relation of a pixel to its neighborhood. Considering the inherent

sequential interdependence of multi-temporal remote sensing data, second deep network system is

a deep pixel-based RNN system. Final deep network system is a deep patch-based RNN system,

which is able to incorporate and utilize the multi-spectral, multi-temporal and spatial information

available. Using a test site in complicated tropical area in Florida, I have tested all the proposed

systems and have achieved a signi�cant improvement in the classi�cation accuracy over existing

methods. The proposed deep networks along with their implementations can become valuable tools

for remote sensing image classi�cation. More broadly, as land cover data are essential inputs to

ecosystems, hydrologic, and atmospheric models [87, 79, 73, 35, 14], improvements in classi�ca-

tion accuracy will likely improve the performance of such models. Additionally, the models allow

3



one to identify potential interactions among land cover categories and therefore make it possible

to identify automatically land-use practices that o�er \win-win-win" environmental, social, and

economic bene�ts [73]. In addition, the proposed systems provide alternative but more scalable

methods that can classify many Landsat image scenes to produce more accurate regional or global

land cover datasets. While I focus on the use of Landsat images, the proposed systems are generic

and can be applied to any measurements that are observed regularly.

The remainder of this dissertation is organized as follows. In chapter 2, I explain the remote

sensing process, especially data acquistion and classi�cation functions. In addition, chapter 2

provides information about Landsat 8 imagery and gives an overview of current classi�cation tech-

niques used by remote sensing community. In chapter 3, I talk about CNN and its properties, and

present the proposed patch-based CNN system customized for remote sensing applications. The

proposed patch-based CNN system is developed considering the spatial relation of a pixel to its

neighborhood. RNN with its properties and di�erent architectures are explained in chapter 4. Also,

I describe the proposed pixel-based RNN system in chapter 4, which considers the inherent sequen-

tial interdependence of multi-temporal remote sensing data. In chapter 5, I explain the proposed

patch-based RNN system, which is built on top of the proposed pixel-based RNN system, and able

to integrate the spectral, temporal and spatial information together. Finally, chapter 6 summarizes

the major �ndings and contributions of the proposed three systems in improving remote sensing

image classi�cation, and discusses open questions for further research.
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CHAPTER 2

REMOTE SENSING PROCESS

The American Society for Photogrammetry and Remote Sensing (ARPRS) adopted a combined

formal de�nition of photogrammetry and remote sensing as: \Remote sensing is the art, science, and

technology of obtaining reliable information about physical objects and the environment, through

the process of recording, measuring and interpreting imagery and digital representations of energy

patterns derived from non contact sensor systems" [17]. The remote sensing process is comprised of

two main functions, which are data acquisition and data analysis of remote sensing data for earth

resource applications. Objects or earth patterns are recognized by the radiant energy reected

and emitted by these objects and patterns. The amount of energy returned by the objects in

di�erent bands of the electromagnetic spectrum is dependent on a lot of factors like the property of

material (structural, physical and chemical), wavelength of radiant energy, surface roughness, angle

of incidence, atmosphere and intensity etc. In remote sensing, the acquisition of data about the

radiant energy reected and emitted by these objects or patterns is done by remote sensors, which

are not in physical contact with these objects or patterns. After acquisition, data are analyzed using

di�erent classi�cation methods, which are used to extract information from data. Data acquisition

and di�erent classi�cation methods are explained in the next two sections.

2.1 Data Acquisition

With the help of di�erent sensors, Electromagnetic Radiation (EMR) information is captured

as an image-like structure in remote sensing imagery. EMR is a form of dynamic energy which

propagates at the velocity of light (c) as wave motion. A wave motion satis�es the relationship c

= ��, where frequency and wavelength are represented by � and �, respectively. The basic wave

theory states that the electromagnetic energy travels at the velocity of light in a harmonic sinu-

soidal fashion. There is an another theory named as the particle theory which describes interaction

of the electromagnetic energy with matter. According to the particle theory, EMR is composed of

many photons and the energy of photon (Q) is de�ned as Q = hc/� or Q = h�, where h represents
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Planck’s constant. Due to the interactions of the EMR with the atmosphere, only a fraction of

the energy is able to pass through to the ground. The interactions of EMR with the atmospheric

constituents are de�ned as atmospheric e�ects and these e�ects are capable of directly interfering

remote sensing process by altering EMR information. On the other hand, these atmospheric e�ects

can be used to extract information about the atmosphere itself. The quality and the quantity of

the information captured by any sensing system is a�ected by the presence of the atmospheric con-

stitutes due to atmospheric scattering and absorption mechanism. These atmospheric constitutes

attenuates the radiation reected from the target object, change the intensity and spectral compo-

sition of radiation available to any sensing system [47]. There are three possible energy outcomes

to the input incidence of the EMR on the earth surface : reected energy, absorbed/emitted energy

and transmitted energy. According to the principle of conservation of energy, incident energy is

equal to the sum of reected energy, absorbed/emitted energy and transmitted energy where all

energy components being a function of wavelength (see Figure 2.1). Electromagnetic spectrum can

be divided into di�erent bands based on the wavelengths. Visible reective region is the part with

spectral band between 0.3 �m to 3 �m. Thermal infrared band between 8 �m to 14 �m is mainly

used to measure thermal emission from the surface. Reective and emissive regions are overlapped

at spectral band from 3 �m to 5.5 �m [47]. The function of wavelength which measures the amount

of incident energy that is reected is called spectral reectance. The value of the spectral reectance

is dependent on the reectance characteristics of earth surface features.

Sensors records EMR that is reected by the surface. The observed electromagnetic radiance

within the instantaneous �eld of view (IFOV) of an optical remote sensing system is de�ned as

a function, L = f (�, Sx;y;z, T, �, P, 
), where L represents the observed electromagnetic ra-

diance, � speci�es the wavelength (spectral response) which is measured in various bands or at

speci�c frequencies, Sx;y;z gives information about the location of the picture element, T represents

temporal factors which provides information about imagery acquisition time and how often the

imagery is acquired, � speci�es the set of angles that describe the geometric relationships among

the radiation source, the target of interest and the remote sensing system, P represents polariza-

tion of back-scattered energy recorded by the sensor, and 
 tells about the precision at which

the data (e.g., reected, emitted, or back-scattered radiation) are recorded by the remote sensing
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Figure 2.1: Interactions between electromagnetic energy and an earth surface feature.

system [42]. Remote sensors can be characterized using di�erent resolutions. Some of the remote

sensor resolutions are as follows:

Spectral resolution: The number and size (dimension) of spectral regions in the spectrum to

which sensor is sensitive, e.g., red, green, blue, near infrared and thermal infrared.

Spatial resolution: The measure of the smallest angular or linear separation between two objects

to which sensor is sensitive, e.g., Landsat 8 imagery is of 30 m spatial resolution and Digital globe’s

QuickBird has 2.44 m spatial resolution.

Temporal resolution: The measure of the interval between two images of a region. It refers to

how often the sensor records imagery of a particular region, e.g., Landsat 8 has temporal resolution

of 16 days.

Radiometric resolution: The sensitivity of detectors to the smallest di�erence in electromag-

netic energy, e.g., Landsat1 recorded energy with precision of 6-bits and Landsat 8 uses 16 bits to

store information.

Angular information: The geometric relationships among the radiation source, the target of

interest and the remote sensing system are de�ned by a set of angles. The angular characteristics

are functions of: the location of energy source in three dimensional sphere and its associated az-
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imuth and zenith angles, the orientation of the terrain facet (pixel) or terrain cover (vegetation,

land cover) under investigation, and the location of remote sensor and its associated azimuth and

zenith angles [42].

After the acquisition of the remotely sensed data, digital image processing is needed to extract

information out of the data. Classi�cation is the most important way; however, the success of the

classi�cation function is dependent on the preprocessing of the remotely sensed data such as atmo-

spheric and geometric corrections. Preprocessing deals with radiometric and geometric corrections

of remotely sensed data. Both radiometric and geometric errors can be internal or external. Inter-

nal errors are introduced by the remote sensing system and are generally systematic (predictable)

in nature. So, they are more likely to be identi�ed and then corrected based on pre-launch or in-

ight calibration measurements. On the other hand, external errors are introduced by phenomena

that vary in nature through space and time. Atmosphere, terrain elevation, slope, and aspect are

the most important external variables that can cause remote sensor data to exhibit radiometric

and geometric error [42]. Preprocessing is needed to be done before using remote sensing data for

the classi�cation. Nowadays even the data archive providers perform some preprocessing before

storing the imagery into the archive. For example, in case of Landsat data, USGS deals with all the

internal errors, and applies terrain slope-aspect corrections and does some geometric recti�cations

of the remotely sensed data to a World Geodetic System (WGS) datum and Universal Transverse

Mecator (UTM) map projection.

Remote sensing systems collect data using sensors and other instruments typically carried on

satellites in orbit around the earth. The remote sensing sensor detects and analyzes the EMR

from the area of interest. Currently, many multi-spectral remote sensing system are available with

di�erent resolutions and characteristics (e.g., Landsat, SPOT, IRS and MODIS). In my research,

I have used Landsat 8 medium-resolution imagery and a brief explanation of Landsat 8 is given

below.

2.1.1 Landsat 8

The Landsat program has been collecting imagery of the earth’s surface for more than 45 years.

It has the longest record of the earth’s continental surface as seen from space. The millions of scenes
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held in the USGS archives provide useful data to all users worldwide for free. Landsat program is

managed jointly by National Aeronautics and Space Administration (NASA) and USGS. Landsat

8 is the latest edition of the Landsat program which carries two sensors: The Operational Land

Imager (OLI) sensor built by the Ball Aerospace and Technologies Corporation and the Thermal

Infrared Sensor (TIRS) built by the NASA Goddard Space Flight Center (GSFC). Sensors on ear-

lier Landsat satellites employed whisk-broom sensors, but OLI instead uses long linear detector

arrays (push-broom sensors) with thousands of detectors per spectral band resulting in a more

sensitive instrument. OLI includes re�ned heritage bands and also introduces three new bands: a

deep blue band for coastal/aerosol studies, a shortwave infrared band for cirrus detection, and a

quality assessment band. The TIRS is also push-broom and provides two thermal bands. Both

of these sensors provide improved signal-to-noise (SNR) radiometric performance quantized over a

12-bit dynamic range instead of 8-bit data range. Improved SNR performance enable better char-

acterization of land cover state and condition. Data products are delivered as 16-bit quantized and

calibrated scaled Digital Numbers (DN) every 16 days in an 8-day o�set from Landsat 7 [22, 91, 63].

Landsat 8 images consist of eight spectral bands with a spatial resolution of 30 meters for

bands 1 to 7 and 9. The resolution for band 8 (panchromatic) is 15 meters. Thermal bands 10

and 11 are useful in providing more accurate surface temperatures and are collected at spatial

resolution of 100 meters. Landsat 8 spectral bands are shown in Table 2.1. Approximate scene

size of a Landsat imagery is 170 km north-south by 183 km east-west (106 mi by 114 mi). Land-

sat 8 products use UTM map projection and WGS 84 datum. All the processing parameters and

details of the Landsat scene can be found in the metadata (MTL.txt) �le. Landsat scenes can be

downloaded at no charge from LandsatLook Viewer, EarthExplorer and GloVis websites [92, 88, 89].

In remote sensing, classi�cation schemes are developed to classify remotely sensed data suc-

cessfully into land cover or use information with di�erent level of classi�cation details (e.g., USGS

Land-Use/Land-Cover and LBCS) [42]. The required level of detail decides the desired spatial

resolution of the remote sensory data. Medium-resolution remote sensing imagery ranges between

10 m to 60 m (e.g., ASTER, EO-1, Landsat and Sentinel) and is appropriate to extract region and

biome level of details [42]. In this dissertation, I adopt a mixed Anderson Level 1/2 land-use/land-
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Table 2.1: Landsat 8 spectral bands.

No. Band Name Wavelength(�m) Resolution(m)

1 Coastal/Aerosol 0.435 - 0.451 30

2 Blue 0.452 - 0.512 30

3 Green 0.533 - 0.590 30

4 Red 0.636 - 0.673 30

5 NIR 0.851 - 0.879 30

6 SWIR-1 1.566 - 1.655 30

7 SWIR-2 2.107 - 2.294 30

8 Panchromatic 0.503 - 0.676 15

9 Cirrus 1.363 - 1.384 30

10 TIR-1 10.60 - 11.19 100

11 TIR-2 11.50 - 12.51 100

cover classi�cation scheme [2] with eight classes in all the systems. So, Landsat has an appropriate

spatial resolution for this study.

2.2 Imagery Classi�cation

Image classi�cation is de�ned as the process of relating pixels in a satellite imagery or remotely

sensed imagery to known land cover or use [40]. Land cover is related to the type of feature

present on the surface of earth and land use is related to the human activity or economic function

associated with a speci�c piece of land [24]. Typically, the conversion of remote sensing data into

meaningful information is done using image classi�cation process [41]. Remote sensing has become a

prime source of land cover information due to advancements in remote sensor technology. Remote

sensors are enabled to do the acquisition of land cover information over large areas at various

spatial, temporal, spectral and radiometric resolutions [40]. Depending on the problem, di�erent

methods are used to do the classi�cation. In this dissertation, the main objective is to develop

accurate land cover classi�cation systems. So, I focus on the supervised classi�cation methods

only. Throughout the text, classi�cation and supervised classi�cation are used interchangeably. In

supervised classi�cation, labels of training samples are required beforehand; so, the identities and

locations of some land cover types should be known a priori through a combination of �eldwork,

interpretation of aerial photography, map analysis, and personal experience [74]. Training sites
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are located by the experts and represent homogeneous examples of these known land-cover types.

Firstly, the classi�cation model is trained using the training sites, and then all the pixels including

pixels within and outside the training sites are evaluated and classi�ed to the class of which it has

the most likelihood of being a member [42]. The existing classi�ers for medium-resolution remote

sensing images are mainly pixel based (e.g., MLC, decision tree, RF, SVM and NN). Among all the

existing classi�ers, the three most popular and successful classi�ers are RF, SVM and NN. Below,

these classi�ers are explained in brief.

2.2.1 Random Forest (RF)

RF is an ensemble approach for classi�cation where outputs from multiple decision trees are

combined together to get a more accurate and reliable prediction. It is a collection of decision trees

but in case of RF, decisions trees only consider a random subset of features instead of all the features

during training. Also, decision trees in RF use bagging approach where training samples for a tree

are selected randomly with replacement from the whole dataset. Due to bagging and random

selection of features, RF avoids over�tting problem. RF is popular among the remote sensing

community because it is an ensemble approach which provides a more accurate and generalized

classi�cation model, and also training a RF model is not computationally expensive [67, 81].

2.2.2 Support Vector Machine (SVM)

SVM is a large margin classi�er. The data points that are closest to any decision boundary

or hyperplane are called support vectors. In SVM, on the one hand, the model tries to �nd the

hyperplane which maximizes the margin between support vectors and the hyperplane; on the other

hand, it tries to minimize the misclassi�cation errors. Based on the problem, a regularization

parameter C is set to deal with the trade-o� between margin and misclassi�cation errors. SVM is

favored by the remote sensing community because it is able to train and generalize using limited

training samples, and in recent past, data availability was a major concern in remote sensing

applications [68, 40, 41, 99].

2.2.3 Neural Network (NN)

NN is a classi�cation approach inspired by the neuron network present in the human brain.

The whole network is arranged as a layer structure and these layers comprise of a chosen number
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of nodes or neurons. Each neuron in one layer is fully connected to all the neurons in the previous

layer independently. NN is capable of building classi�cation models for very complex problems

but requires more training data compared to the other classi�ers. Recently, with the increased in

remote sensing data, NN has become popular among the remote sensing community [57, 46].

Very recently, the remote sensing community has also started to incorporate deep neural net-

works for remote sensing image classi�cation [13, 75, 101, 69, 38, 65, 78, 71, 54], but the majority of

research has been focusing on high-resolution images classi�cation. However, in order to realize the

full potential of deep networks, a large training data set is needed [85, 32] and it may be di�cult

to acquire a high-resolution data set for a very large area. On the other hand, we have abundance

of publicly available and free of charge remote sensing data at medium-resolution such as Landsat

imagery [90]. Consequently, I have proposed three systems for medium-resolution Landsat imagery

using CNN and RNN, which are two special types of deep NNs. The next three chapters introduce

three new deep NN systems for remote sensing data, and also explain CNN and RNN in detail.
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CHAPTER 3

SPATIAL CLASSIFICATION

In this chapter, considering the spatial relation of a pixel to its neighborhood, I propose a new deep

patch-based CNN system tailored for medium-resolution remote sensing data. In computer vision,

deep CNNs have achieved signi�cant results [85, 32, 55, 80]; in some cases, CNNs have surpassed

human performance. Classi�cation of the high-resolution remote sensing images is similar to object

recognition in computer vision. Therefore, the majority of research using deep CNNs in the remote

sensing community has been focusing on high-resolution images[13, 75, 101, 69, 38, 65]. However,

current CNNs, when applied to medium-resolution are not e�ective. With 30m spatial resolution

of Landsat images (non-thermal bands), the typical deep CNN architectures for object recognition

may not be e�ective as they are normally used to detect small objects like houses, primarily based

on shape, texture, and other �ne structures; such features are not present in medium-resolution

images. As a result, I have to make substantial changes to typical deep CNNs and create a unique

deep network architecture to work with medium-resolution remote sensing data. The system is

designed by incorporating distinctive characteristics of medium-resolution data; in particular, the

system computes patch-based samples from multidimensional top of atmosphere reectance data.

Considering that a pixel in remote sensing imagery is spatially related to its neighbors [51, 8], I

have developed a six-layer deep convolutional system with better accuracy which can be applied to

medium-resolution imagery such as Landsat data [90].

The remainder of this chapter is organized as follows. In Section 3.1, I describe convolutional

neural networks customized for remote sensing applications. A new patch-based CNN for classifying

medium-resolution remote sensing data is presented in Section 3.2. In Section 3.3, the experimental

results from the proposed patch-based CNN system and the comparisons with a pixel-based con-

ventional NN system, a pixel-based CNN system and a multidimensional patch-based NN system

with the same spatial context are given.
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Figure 3.1: Simple neural network.

3.1 Convolutional Neural Networks (CNNs)

In conventional multilayer neural networks, input is given as a single vector and is transformed

over a series of hidden layers to reach the output. The hidden layers comprise of a chosen number

of hidden units (neurons) and each neuron in a hidden layer is fully connected to all the neurons

present in the previous layer independently (see Figure 3.1). Several previous studies on land

cover classi�cation using multilayer neural networks have achieved satisfactory results [57, 82, 46].

However, the standard multilayer neural networks are limited when dealing with multidimensional

images. Firstly, an enormous number of parameters are needed for multidimensional inputs because

all input elements are converted into a single vector. For example, an image of size X � Y with

Z bands is equivalent to X � Y � Z inputs, which requires to calculate X � Y � Z weights for

each neuron in the �rst hidden layer. With additional hidden layers, these parameters add up

quickly. Secondly, spatial contexts between pixels are not considered explicitly in the multilayer

neural network; all pixels are considered independently without considering their spatial locality

in the image. CNNs are a variant of multilayer neural networks, inspired by the animal’s visual

cortex [39]. CNNs handle images as a multidimensional input, instead as a single vector and
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Figure 3.2: Local connectivity.

consider the spatial contexts of image pixels explicitly. CNNs are characterized by several unique

properties, which are discussed below.

3.1.1 Local Connectivity

In CNN, a neuron in a hidden layer is connected only to a subregion (called receptive �eld)

of the input unlike the conventional multilayer neural network where neuron is connected to all

the neurons in the previous layer; therefore, fewer parameters are required and less computation

is needed consequently. The structure of neurons in the hidden layer is de�ned by the number of

channels present in the receptive �eld. Note that the local receptive �eld of an neuron in the second

layer covers a larger area in terms of input than a related neuron in the �rst layer. By having more

layers than conventional neural networks, CNN can also model long range dependencies but more

e�ciently [39, 27]. Figure 3.2 shows two neurons present in the hidden layer which are connected

to two di�erent receptive �elds of size 3 � 3. Here, each neuron is connected to a receptive �eld in

three di�erent channels (RGB); in case of a gray scale image, each neuron connects only to a single

channel [39, 27].
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Figure 3.3: Parameter sharing with two feature maps.

3.1.2 Parameter Sharing

Parameter sharing is also an important property of CNN, where all the neurons belonging to a

particular feature map share the same weighted connections and these neurons cover all the used

receptive �elds. The weighted connections can also be seen as a �lter or kernel. With parameters

shared by all the neurons belonging to a feature map, this property reduces the number of the

parameters substantially. A feature map using an unique �lter extracts the same feature at all the

receptive �elds. Di�erent feature maps together create a multidimensional matrix which generates

inputs for the next layer [27]. Figure 3.3 shows two feature maps colored as red and blue, where

neurons belonging to a particular feature map share the same �lter and cover di�erent receptive

�elds.

3.1.3 Pooling/Subsampling

Pooling/Subsampling layer is a combination of two operations. Pooling is performed on non

overlapping patches present in the feature map, in which a pool of neighboring neurons is replaced

by a single neuron. In subsampling, those pooling generated neurons replace the pool of neighboring
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Figure 3.4: Max pooling.

neurons in the next hidden layer. It reduces the number of neurons using pooling. Pooling can

be done using di�erent functions, such as the maximum, minimum, and average of the involved

pixels [10]. Figure 3.4 shows four non overlapping patches of size 2�2 represented by four di�erent

color; subsampling is done after doing max pooling, in which pool of neighboring neurons is replaced

by the maximum value.

3.1.4 Depth

Depth of the CNNs, i.e., the number of layers, is also very important. Recent CNNs advocate

the use of deep architectures [85, 32]. Theoretically, the advantages of having a deep architec-

ture over a conventional shallow architecture are not yet fully understood [7]. However, the deep

architecture is preferred to solve complex AI problems like image analysis and natural language

processing [6], where a problem is decomposed into multi-levels of computation and representation.

In order to represent same functions, studies also show that the growth of the number of units

in deep networks is linear, compared to exponential growth in case of shallow networks [20]. The

proposed architecture supports the same idea, where classi�cation accuracy of the system decreases
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even if a single convolution layer is removed.

These features together enable CNN to model complex relationships among input elements

e�ciently by creating di�erent combinations along paths through the layers. Compared to conven-

tional neural networks, CNNs avoid the need of exponentially many neurons in hidden layers. With

e�ective training algorithms developed in recent years, they have led to unprecedented performance

in many applications (e.g., [85, 32, 80, 16, 55, 72]).

3.2 A Patch-Based CNN System for Remote Sensing Image
Classi�cation

The proposed system is adapted for medium-resolution remote sensing imagery. While the

proposed system is generic and should work for all the medium-resolution multidimensional data,

I have tested the new system on Landsat images. Below, I de�ne the features used and the

architecture adopted.

3.2.1 Multi-Spectral Layer Stack

Landsat 8 imagery is categorized as a medium-resolution imagery with 30m spatial resolution for

the non-thermal bands. With this resolution, we cannot use the typical object recognition deep CNN

architecture where it is used to detect small objects like houses, primarily, based on their shapes

and �ne structures. In order to deal with this limitation, I have calculated the top-of-atmosphere

(TOA) reectance values associated with the pixels from the scaled DN values belonging to all the

OLI bands (except the panchromatic band). TOA reectance values can be obtained by rescaling

and correcting the default 16-bit unsigned integer format DN values using radiometric (reectance)

rescaling coe�cients and sun angle provided in the MTL �le present with Landsat 8 product [93].

A Landsat image is then converted into a multi-spectral layer stack of TOA reectance of size

X � Y � Z where X speci�es the width, Y the height, and Z the number of channels. In the

proposed system, I have calculated the TOA reectance at all the locations for the eight OLI bands

independently; as a result, I have eight di�erent TOA reectance 2D matrices of size X�Y . Later,

I club these eight TOA reectance 2D matrices into one eight-channel multi-spectral layer stack

of TOA reectance, where each location at this multi-spectral layer stack represents a vector of
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Figure 3.5: An example of patch-based sample.

TOA reectances of length eight. This representation is used as input instead of the multi-spectral

Landsat imagery. Values of X, Y , and Z vary with the medium-resolution imagery source but the

structure of multi-spectral layer stack remains the same.

3.2.2 Patch-Based Samples

CNN requires image-like multidimensional input instead of a single vector. Therefore, I have to

extract multidimensional samples instead of pixel-based single vector samples. To do that, samples

are extracted as patches with size 5 � 5 � 8 out of multi-spectral layer stack and labeled using the

center pixel of each patch. Figure 3.5 shows an example of patch-based sample. These patches

have multidimensional image-like structures of TOA reectance data which are di�erent from the

usual segments representing objects or groups of objects in object based image analysis for high-

resolution remote sensing data [9, 94]. Optimal patch size can vary with the medium-resolution

imagery source; however, I have found that the window size of 5 � 5 � 8 size is able to capture

spatially local correlation of a center pixel to the surrounding pixels and limit heterogeneous pixels

in case of Landsat 8. Patches are extracted for all possible locations in the data, which overlap

with the neighboring patches. In order to extract maximal samples, the stride value is set to one

while extracting patches and all the valid locations (except the boundary and the cloud/shadow

surrounded locations) are used to extract samples.
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3.2.3 Cloud/Shadow Mask

In order to deal with cloud/shadow pixels, a cloud/shadow mask is generated for a Landsat

image using the Fmask Algorithm [102]. The mask is then used to locate all the cloud/shadow

pixels present in the imagery. TOA reectance vector of the cloud/shadow location is set to zero

vector (see Figure 4.8). If a patch contains any cloud/shadow pixels, it is marked as unused for

training.

3.2.4 Training Sample Selection

While extracting training samples out of all the available patches, I impose two additional

constraints. First, 60% or more of pixels present in a patch should belong to the same class as the

center pixel. Second, there should not be any cloud/shadow pixel present in the patch. Samples

are extracted for the locations in the data which satisfy the constraints.

3.2.5 Stride/Padding/Filters/Depth

In the proposed architecture, the size of input samples is only 5 � 5 � 8. Therefore, all the

convolutions have stride value one and are zero padded to make the size of the output same as the

input. The number of �lters is doubled with each subsequent convolutional layer to increase the

number of feature maps in the hidden layers.

The proposed CNN consists of six layers and an additional softmax layer. The �rst �ve hidden

layers are convolutional and the last hidden layer is fully connected. I have achieved best results

with �ve convolutional layers. Classi�cation accuracy of the system decreases even if a single

convolution layer is removed. However, including more than �ve convolution layers does not show

any signi�cant improvement in the classi�cation accuracy.

3.2.6 Architecture

Figure 3.6 illustrates the overall architecture of the proposed CNN system. I have not used any

pooling/subsampling layer because the size of the samples is only 5 � 5 � 8. The softmax layer

generates a probability distribution over the eight classes, using the output from the fully connected

layer as its input. To implement this network, I have used Google’s tensorow [1] (an open source
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Figure 3.6: Architecture of the proposed convolutional neural network system.
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