Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
It is demonstrated that inflatable structures can provide large amounts of stiffness compared to traditional structures of the same mass. A variety of inflatable structures are investigated theoretically. A pressurized lobed cylindrical wall is shown to be sufficiently lightweight and stiff that it can form a lighter-than-air vacuum chamber. Some prototype inflatables are built. Mechanical and optical tests are performed. Some applications in aerospace and solar energy which require large linear dimension, small mass, or large stiffness are discussed including electromagnetic space launch, airship buoyancy control, solar chimney power plants, and large inflatable mirrors.
A Dissertation Submitted to the Department of Physics in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Publisher
Florida State University
Identifier
FSU_migr_etd-1120
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.