Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
In order to image or map targets on an ocean floor, a synthetic aperture sonar platform is moved underwater over the ocean floor. The platform pings or transmits acoustic signals, which reflect off the target back to the receiver. A target image is generated after applying a focusing or a beamforming algorithm on the processed received signal. However the moving platform, when pinging, undergoes motions like yaw, sway, surge, which produce distortions in the final target image. The main objective of this thesis is to geometrically model yaw motion and apply the motion compensation scheme to correct for the yaw motion causing target image distortion. The compensation scheme makes use of phase filtering of the received signals to improve the target image quality. The results obtained, demonstrate effectiveness of the method to compensate for the target image distortion due to yaw motion.
A Thesis submitted to the Department of Electrical and Computer Engineering in partial fulfillment of the requirements for the degree of Master of Science.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Frank B. Gross, Professor Directing Thesis; Krishna R. Arora, Committee Member; Rodney R. Roberts, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-3691
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.