Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Batra, J., Tjong, H., & Zhou, H. -X. (2016). Electrostatic effects on the folding stability of FKBP12. Protein Engineering, Design & Selection : Peds. Retrieved from http://purl.flvc.org/fsu/fd/FSU_pmch_27381026
The roles of electrostatic interactions in protein folding stability have been a matter of debate, largely due to the complexity in the theoretical treatment of these interactions. We have developed computational methods for calculating electrostatic effects on protein folding stability. To rigorously test and further refine these methods, here we carried out experimental studies into electrostatic effects on the folding stability of the human 12-kD FK506 binding protein (FKBP12). This protein has a close homologue, FKBP12.6, with amino acid substitutions in only 18 of their 107 residues. Of the 18 substitutions, 8 involve charged residues. Upon mutating FKBP12 residues at these 8 positions individually into the counterparts in FKBP12.6, the unfolding free energy (ΔGu) of FKBP12 changed by -0.3 to 0.7 kcal/mol. Accumulating stabilizing substitutions resulted in a mutant with a 0.9 kcal/mol increase in stability. Additional charge mutations were grafted from a thermophilic homologue, MtFKBP17, which aligns to FKBP12 with 31% sequence identity over 89 positions. Eleven such charge mutations were studied, with ΔΔGu varying from -2.9 to 0.1 kcal/mol. The predicted electrostatic effects by our computational methods with refinements herein had a root-mean-square deviation of 0.9 kcal/mol from the experimental ΔΔGu values on 16 single mutations of FKBP12. The difference in ΔΔGu between mutations grafted from FKBP12.6 and those from MtFKBP17 suggests that more distant homologues are less able to provide guidance for enhancing folding stability.
Batra, J., Tjong, H., & Zhou, H. -X. (2016). Electrostatic effects on the folding stability of FKBP12. Protein Engineering, Design & Selection : Peds. Retrieved from http://purl.flvc.org/fsu/fd/FSU_pmch_27381026