Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Dai, J., & Zhou, H. -X. (2016). Semiclosed Conformations of the Ligand-Binding Domains of NMDA Receptors during Stationary Gating. Biophysical Journal. Retrieved from http://purl.flvc.org/fsu/fd/FSU_pmch_27705765
NMDA receptors are tetrameric ligand-gated ion channels. In the continuous presence of saturating agonists, NMDA receptors undergo stationary gating, in which the channel stochastically switches between an open state that permits ion conductance and a closed state that prevents permeation. The ligand-binding domains (LBDs) of the four subunits are expected to have closed clefts in the channel-open state. On the other hand, there is little knowledge about the conformational status of the LBDs in the channel-closed state during stationary gating. To probe the latter conformational status, Kussius and Popescu engineered interlobe disulfide cross-links in NMDA receptors and found that the cross-linking produced stationary gating kinetics that differed only subtly from that produced by agonist binding. These authors assumed that the cross-linking immobilized the LBDs in cleft-closed conformations, and consequently concluded that throughout stationary gating, agonist-bound LBDs also stayed predominantly in cleft-closed conformations and made only infrequent excursions to cleft-open conformations. Here, by calculating the conformational free energies of cross-linked and agonist-bound LBDs, we assess whether cross-linking actually traps the LBDs in cleft-closed conformations and delineate semiclosed conformations of agonist-bound LBDs that may potentially be thermodynamically and kinetically important during stationary gating. Our free-energy results show that the cross-linked LBDs are not locked in the fully closed form; rather, they sample semiclosed conformations almost as readily as the agonist-bound LBDs. Several lines of reasoning suggest that LBDs are semiclosed in the channel-closed state during stationary gating. Our free-energy simulations suggest possible structural details of such semiclosed LBD conformations, including intra- and intermolecular interactions that serve as alternatives to those in the cleft-closed conformations.
Dai, J., & Zhou, H. -X. (2016). Semiclosed Conformations of the Ligand-Binding Domains of NMDA Receptors during Stationary Gating. Biophysical Journal. Retrieved from http://purl.flvc.org/fsu/fd/FSU_pmch_27705765