Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Squillacote, S. C. (2018). Accelerated Slab Replacement Using Temporary Precast Panels and Self Consolidating Concrete. Retrieved from http://purl.flvc.org/fsu/fd/2018_Su_Squillacote_fsu_0071N_13474
As it stands, many of Florida’s roads have already reached their designed service life and are now in the process of being renewed. The current method in rehabilitation of concrete pavement requires the expired piece of pavement to be cut and removed, place new dowel bars, and then epoxied into the surrounding slabs. Once the slab area has been prepared, fresh concrete is poured, and finished. The concrete is then cured and monitored to achieve a strength requirement of 2,200 psi in the shortest possible time before the lanes can be opened for traffic. This event has been known to take a long time and on major highways lane where lane closure may not exceed 8 hours. This restriction limits the number of slabs that can be replaced. The types of concrete used on these projects are also problematic. In the past, high amounts of cementitious material was used and this can lead to premature cracking. To improve production levels, accelerate construction time at a reduced cost, and provide long lasting pavement, the current research study presents an alternative method of using precast slab panels and self-consolidating concrete. This was accomplished by testing several SCC mixes in the laboratory to achieve concrete with high workability without, high early strength and without segregation. Then, precast panels were designed and built for quick installation and removal. This study also necessitated full scaled field tests where precast slab panels with the proper SCC mix were used. The slabs were tested by a loaded truck moving over it repeatedly and the slab was monitored for any movement and displacements caused by driving and braking on it. After the data was collected from the precast panels, the slabs were then removed and fresh SCC was then poured into the empty pit. The SSC slab was left to cure and the maturity of the concrete was monitored to achieve the required strength for lane opining. In this study, three techniques were used to monitor the concrete maturity. These techniques involved the use of the conventional thermocouples, thermal camera, and laser gun. The traffic load was then applied by driving a dump truck loaded to 25000 pounds over the track for 100 laps. The SCC mix behaved as designed and presented in this study. It achieved a high workability and retained a high slump for nearly an hour. It also exceeded the required FDOT strength requirement of 2200 psi for lane opening. The precast panels proved to be highly durable during the installation, testing, removal and can be reused for other similar applications. Results from this study proved proved that using this method has several benefits including greater productivity, reduced maintenance of traffic, shorter project completion time. Further, it may reduce the case of premature cracking due to the increase amount of curing time.
A Thesis submitted to the Department of Civil and Environmental Engineering in partial fulfillment of the requirements for the degree of Master of Science.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Kamal Tawfiq, Professor Directing Thesis; Michelle Rambo-Roddenberry, Committee Member; Lisa Spainhour, Committee Member; Raphael Kampmann, Committee Member.
Publisher
Florida State University
Identifier
2018_Su_Squillacote_fsu_0071N_13474
Squillacote, S. C. (2018). Accelerated Slab Replacement Using Temporary Precast Panels and Self Consolidating Concrete. Retrieved from http://purl.flvc.org/fsu/fd/2018_Su_Squillacote_fsu_0071N_13474