Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
My dissertation presents a novel statistical method to estimate a sparse signal in functional data and to construct confidence bands for the signal. Existing methods for inference for the mean function in this framework include smoothing splines and kernel estimates. Our methodology involves thresholding a least squares estimator, and the threshold level depends on the sources of variability that exist in this type of data. The proposed estimation method and the confidence bands successfully adapt to the sparsity of the signal. We present supporting evidence through simulations and applications to real datasets.
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.