Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
This thesis presents and evaluates a particular algorithm used for the real time computations of time dependent ordinary and partial differential equations which employs a parallelization strategy over the temporal domain. We also discuss the coupling of this method with another popular technique used for real time computations, model reduction, which will be shown to provide more gains than either method alone. In particular, we look at reduced order modeling based on proper orthogonal decompositions. We present some applications in terms of solving time dependent nonlinear partial diï¬erential equations and solving these equations with a coupled approach of combining model reduction and the parareal algorithm . The performance of this method, both numerically and computationally, is discussed in terms of the gains in speedup and efficiency, and in terms of the scalability of the parallelization of the temporal domain on a larger and larger set of compute nodes or processors.
A Thesis submitted to the School of Computational Science in partial fulfillment of the requirements for the degree of Master of Science.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Janet Peterson, Professor Directing Thesis; Max Gunzburger, Committee Member; Robert Van Engelen, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-4272
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.