Some of the material in is restricted to members of the community. By logging in, you may be able to gain additional access to certain collections or items. If you have questions about access or logging in, please use the form on the Contact Page.
Chakraborty, S. (2014). DC Transport in Two-Dimensional Electron Systems under Strong Microwave Illumination. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-9155
At low temperature (T) and weak magnetic field (B), two dimensional electron systems (2DES) can exhibit strong 1/B-periodic resistance oscillations on application of sufficiently strong microwave radiation. These oscillations are known as microwave induced resistance oscillations (MIROs), MIROs appearing near cyclotron resonance (CR) and its harmonics involve single photon processes and are called integer MIROs while the oscillations near CR subharmonics require multiphoton processes and are called fractional MIROs. Similar strong 1/B periodic resistance oscillations can occur due to strong dc current, and are known as Hall-field resistance oscillations (HIROs). Oscillations also occur for a combination of microwave radiation and strong dc current. In one prominent theory of MIROs, known as the displacement model , electrons make impurity-assisted transitions into higher or lower Landau levels by absorbing or emitting one or more (N) photons. In the presence of combined strong dc current and microwave radiation, electrons make transitions between Landau levels by absorbing or emitting photons followed by a space transition along the applied dc bias. The object of the dissertation is to explore how the different resistance oscillations are affected by strong microwave radiation when multiphoton processes are relevant. We used a coplanar waveguide (CPW) structure deposited on the sample, as opposed to simply placing the sample near the termination of a waveguide as is more the usual practice in this field. The CPW allows us to estimate the AC electric field (E_{AC}) at the sample. In much of the work presented in this thesis we find that higher $N$ processes supersede the competing lower N processes as microwave power is increased. We show this in the presence and in the absence of a strong dc electric field. Finally, we look at the temperature evolution of fractional MIROs to compare the origin of the fractional MIROs with that of integer MIROs.
A Dissertation submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
Bibliography Note
Includes bibliographical references.
Advisory Committee
Lloyd Engel, Professor Co-Directing Dissertation; Irinel Chiorescu, Professor Co-Directing Dissertation; Naresh Dalal, University Representative; Jianming Cao, Committee Member; Nicholas Bonesteel, Committee Member; Alexander Volya, Committee Member.
Publisher
Florida State University
Identifier
FSU_migr_etd-9155
Use and Reproduction
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). The copyright in theses and dissertations completed at Florida State University is held by the students who author them.
Chakraborty, S. (2014). DC Transport in Two-Dimensional Electron Systems under Strong Microwave Illumination. Retrieved from http://purl.flvc.org/fsu/fd/FSU_migr_etd-9155